IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A regime switching long memory model for electricity prices

Listed author(s):
  • Haldrup, Niels
  • Nielsen, Morten Orregaard

In this paper we develop a regime switching model which can generate long memory (fractional integration) in each of the regime states. This property is relevant in a number of cases. For instance, the deregulated market for electricity power in the Nordic countries is characterized by electricity spot prices with a high degree of long memory. It occurs that in some time periods bilateral prices are identical whereas in other periods the prices differ. The latter occurs when a capacity congestion exists across regions and multiple price areas will result. If the price series are fractionally integrated this means that in some regimes, an extreme form of fractional cointegration amongst prices will exist. We define a Markov switching fractional integration model from which the fractional orders of integration in separate states can be estimated using Maximum Likelihood techniques. The model is adapted to data for the Nordic electricity spot market, and we find that regime swithing and long memory are empirically relevant to co-exist. In particular, we find that the price behaviour for single markets can be very different depending upon the presence or absence of bottlenecks in electricity transmission. Using Monte Carlo forecasting we find that the regime switching model appears to be especially attractive in forecasting relative prices.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(05)00171-5
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 135 (2006)
Issue (Month): 1-2 ()
Pages: 349-376

as
in new window

Handle: RePEc:eee:econom:v:135:y:2006:i:1-2:p:349-376
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Hansen, Bruce E. & Seo, Byeongseon, 2002. "Testing for two-regime threshold cointegration in vector error-correction models," Journal of Econometrics, Elsevier, vol. 110(2), pages 293-318, October.
  2. Massimiliano Marcellino & Grayham E. Mizon & Hans-Martin Krolzig, 2002. "A Markov-switching vector equilibrium correction model of the UK labour market," Empirical Economics, Springer, vol. 27(2), pages 233-254.
  3. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
  4. Nielsen, Morten rregaard, 2004. "Efficient Likelihood Inference In Nonstationary Univariate Models," Econometric Theory, Cambridge University Press, vol. 20(01), pages 116-146, February.
  5. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
  6. Fabra, Natalia & Toro, Juan, 2005. "Price wars and collusion in the Spanish electricity market," International Journal of Industrial Organization, Elsevier, vol. 23(3-4), pages 155-181, April.
  7. Motta,Massimo, 2004. "Competition Policy," Cambridge Books, Cambridge University Press, number 9780521016919, August.
  8. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
  9. Philip Hans Franses & Marius Ooms & Charles S. Bos, 1999. "Long memory and level shifts: Re-analyzing inflation rates," Empirical Economics, Springer, vol. 24(3), pages 427-449.
  10. Davidson, James, 2004. "Forecasting Markov-switching dynamic, conditionally heteroscedastic processes," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 137-147, June.
  11. Lee, Dongin & Schmidt, Peter, 1996. "On the power of the KPSS test of stationarity against fractionally-integrated alternatives," Journal of Econometrics, Elsevier, vol. 73(1), pages 285-302, July.
  12. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
  13. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
  14. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  15. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
  16. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  17. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  18. Haldrup, Niels & Nielsen, Morten Orregaard, 2007. "Estimation of fractional integration in the presence of data noise," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3100-3114, March.
  19. Clive W.J. Granger & Namwon Hyung, 2013. "Occasional Structural Breaks and Long Memory," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 739-764, November.
  20. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
  21. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
  22. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  23. Kleindorfer, Paul R & Fernando, Chitru S, 1993. "Peak-Load Pricing and Reliability under Uncertainty," Journal of Regulatory Economics, Springer, vol. 5(1), pages 5-23, March.
  24. Phillips, Peter C. B. & Jin, Sainan, 2002. "The KPSS test with seasonal dummies," Economics Letters, Elsevier, vol. 77(2), pages 239-243, October.
  25. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
  26. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
  27. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
  28. Kramer, Walter, 1998. "Fractional integration and the augmented Dickey-Fuller Test," Economics Letters, Elsevier, vol. 61(3), pages 269-272, December.
  29. Engle, R. F. & Granger, C. W. J. & Hallman, J. J., 1989. "Merging short-and long-run forecasts : An application of seasonal cointegration to monthly electricity sales forecasting," Journal of Econometrics, Elsevier, vol. 40(1), pages 45-62, January.
  30. Sherman,Roger, 1989. "The Regulation of Monopoly," Cambridge Books, Cambridge University Press, number 9780521368629, August.
  31. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, July.
  32. Crew, Michael A & Fernando, Chitru S & Kleindorfer, Paul R, 1995. "The Theory of Peak-Load Pricing: A Survey," Journal of Regulatory Economics, Springer, vol. 8(3), pages 215-248, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:135:y:2006:i:1-2:p:349-376. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.