IDEAS home Printed from
   My bibliography  Save this article

Markets Design, Bidding Rules, and Long Memory in Electricity Prices


  • Sandro Sapio


[eng] In uniform price, sealed-bid, day-ahead electricity auctions, the market price is set at the intersection between aggregate demand and supply functions constructed by a market operator. Each day, just one agent - the marginal generator - owns the market-clearing plant. Moreover, day-ahead auctions are embedded in multi-segment systems, wherein diverse protocols coexist and change over time. This complex environment leads to adoption of simple, adaptive bidding rules. Specifically, such a market design enables the emergence of two different types of routines, depending on whether the agent is a likely marginal or inframarginal generator. However, because of the uniform price mechanism, only the bidding behavior of the former can be reflected into market prices. Depending on the specific way marginal generators process past information to set their bids - « hyperbolic » or « exponential » - electricity prices are likely to display long- or short-memory. Using an analogy with the hyperbolic discounting - a quite robust behavioral bias in humans - a long-memory view of electricity prices is proposed. This insight is confirmed by spectral analysis of daily data from NordPool and CaIPX markets, in sharp contrast with most previous empirical studies. This paper underlines the importance of institutional settings in determining the relationship between individual behavior and market outcomes, and proposes an interesting mapping of bidding rules and models of information processing into the time series properties of market prices. [fre] Pour les enchères sous plis scellés et prix uniformes sur les marchés day ahead de l'électricité, le prix de marché est déterminé à l'intersection des fonctions d'offre et de demande agrégées construites par un opérateur de marché. Chaque jour, un seul agent (le générateur marginal) détient l'usine qui permet de solder le marché. De plus, les enchères day ahead sont intégrées dans des systèmes multi segments, dans lesquels divers protocoles coexistent et changent dans le temps. Cet environnement complexe conduit à l'adoption de règles d'enchères simples et adaptatives. Plus précisément, une telle configuration de marché autorise l'émergence de deux types différents de routines, selon que l'agent est un générateur marginal ou infra marginal. Cependant, du fait du mécanisme de prix uniforme, seul le comportement d'enchère du premier peut être reflété dans les prix de marchés. En fonction de la manière spécifique dont les générateurs marginaux traitent l'information passée pour déterminer leurs enchères (« hyperbolique » ou « exponentielle ») les prix de l'électricité sont susceptibles d'exhiber des effets de mémoire longue ou courte. En utilisant une analogie avec l'actualisation hyperbolique (un biais de comportement humain robuste) une conception en mémoire longue du prix de l'électricité est proposée. Cette intuition est confirmée par une analyse spectrale des données journalières issues des marchés NordPool et CalPX, en opposition forte avec de nombreuses études empiriques précédentes. Cet article souligne l'importance des accords institutionnels pour déterminer les relations entre les comportements individuels et les résultats du marché. Il propose une cartographie intéressante des règles d'enchères et des modèles de traitement de l'information selon les propriétés des séries temporelles des prix de marché.

Suggested Citation

  • Sandro Sapio, 2004. "Markets Design, Bidding Rules, and Long Memory in Electricity Prices," Revue d'Économie Industrielle, Programme National Persée, vol. 107(1), pages 151-170.
  • Handle: RePEc:prs:recind:rei_0154-3229_2004_num_107_1_3053
    Note: DOI:10.3406/rei.2004.3053

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Giovanni Dosi & Luigi Marengo & Giorgio Fagiolo, 1996. "Learning in evolutionary environment," CEEL Working Papers 9605, Cognitive and Experimental Economics Laboratory, Department of Economics, University of Trento, Italia.
    2. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
    3. S. James Press, 1967. "A Compound Events Model for Security Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 317-317.
    4. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    5. Lawrence M. Ausubel & Peter Cramton & Marek Pycia & Marzena Rostek & Marek Weretka, 2014. "Demand Reduction and Inefficiency in Multi-Unit Auctions," Review of Economic Studies, Oxford University Press, vol. 81(4), pages 1366-1400.
    6. Kirman, A., 1997. "Interaction and Markets," ASSET - Instituto De Economia Publica 166, ASSET (Association of Southern European Economic Theorists).
    7. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    8. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    9. Frank A. Wolak & Robert H. Patrick, 2001. "The Impact of Market Rules and Market Structure on the Price Determination Process in the England and Wales Electricity Market," NBER Working Papers 8248, National Bureau of Economic Research, Inc.
    10. Parisio, Lucia & Bosco, Bruno, 2003. "Market Power and the Power Market: Multi-unit Bidding and (In)Efficiency in Electricity Auctions," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 10(4), pages 377-401, August.
    11. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    12. Cameron, Lisa & Cramton, Peter, 1999. "The Role of the ISO in U.S. Electricity Markets: A Review of Restructuring in California and PJM," The Electricity Journal, Elsevier, vol. 12(3), pages 71-81, April.
    13. Paul L. Joskow, 2001. "California's Electricity Crisis," Oxford Review of Economic Policy, Oxford University Press, vol. 17(3), pages 365-388.
    14. Ángel León & Antonio Rubia, 2001. "Comportamiento Del Precio Y Volatilidad En El Pool Eléctrico Español," Working Papers. Serie EC 2001-04, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    15. Catherine D. Wolfram, 1999. "Measuring Duopoly Power in the British Electricity Spot Market," American Economic Review, American Economic Association, vol. 89(4), pages 805-826, September.
    16. Green, Richard, 2006. "Market power mitigation in the UK power market," Utilities Policy, Elsevier, vol. 14(2), pages 76-89, June.
    17. Bower, John & Bunn, Derek, 2001. "Experimental analysis of the efficiency of uniform-price versus discriminatory auctions in the England and Wales electricity market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 561-592, March.
    18. Scharfstein, David S & Stein, Jeremy C, 1990. "Herd Behavior and Investment," American Economic Review, American Economic Association, vol. 80(3), pages 465-479, June.
    19. Ferrara, Laurent & Guegan, Dominique, 2001. "Forecasting with k-Factor Gegenbauer Processes: Theory and Applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(8), pages 581-601, December.
    20. Rafal Weron & Ingve Simonsen & Piotr Wilman, 2003. "Modeling highly volatile and seasonal markets: evidence from the Nord Pool electricity market," Econometrics 0303007, EconWPA.
    21. Schwartz, Eduardo S, 1997. " The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    22. Dosi, G & Egidi, M, 1991. "Substantive and Procedural Uncertainty: An Exploration of Economic Behaviours in Changing Environments," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 145-168, April.
    23. Stoker, Thomas M, 1986. "Simple Tests of Distributional Effects on Macroeconomic Equations," Journal of Political Economy, University of Chicago Press, vol. 94(4), pages 763-795, August.
    24. Bystrom, Hans N. E., 2005. "Extreme value theory and extremely large electricity price changes," International Review of Economics & Finance, Elsevier, vol. 14(1), pages 41-55.
    25. Alan P. Kirman, 1992. "Whom or What Does the Representative Individual Represent?," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 117-136, Spring.
    26. Giulio Bottazzi & Giovanni Dosi & Igor Rebesco, 2002. "Institutional Architectures and Behavioural Ecologies in the Dynamics of Financial Markets: a Preliminary Investigation," LEM Papers Series 2002/24, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    27. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, Oxford University Press, vol. 108(1), pages 137-156.
    28. repec:dau:papers:123456789/12331 is not listed on IDEAS
    29. Green, Richard J & Newbery, David M, 1992. "Competition in the British Electricity Spot Market," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 929-953, October.
    30. De Vany, Arthur S. & Walls, W. David, 1999. "Cointegration analysis of spot electricity prices: insights on transmission efficiency in the western US," Energy Economics, Elsevier, vol. 21(5), pages 435-448, October.
    31. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    32. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    33. Debreu, Gerard, 1974. "Excess demand functions," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 15-21, March.
    34. Sonnenschein, Hugo, 1972. "Market Excess Demand Functions," Econometrica, Econometric Society, vol. 40(3), pages 549-563, May.
    35. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    36. David Laibson, 1997. "Golden Eggs and Hyperbolic Discounting," The Quarterly Journal of Economics, Oxford University Press, vol. 112(2), pages 443-478.
    37. Joskow, Paul L, 1996. "Introducing Competition into Regulated Network Industries: From Hierarchies to Markets in Electricity," Industrial and Corporate Change, Oxford University Press, vol. 5(2), pages 341-382.
    38. Amihud, Yakov & Mendelson, Haim, 1987. " Trading Mechanisms and Stock Returns: An Empirical Investigation," Journal of Finance, American Finance Association, vol. 42(3), pages 533-553, July.
    39. Stoll, Hans R & Whaley, Robert E, 1990. "Stock Market Structure and Volatility," Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 37-71.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marossy, Zita, 2011. "A villamos energia áralakulásának egy új modellje
      [A new model for price movement in electric power]
      ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 253-274.
    2. Bottazzi, G. & Sapio, S. & Secchi, A., 2005. "Some statistical investigations on the nature and dynamics of electricity prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 54-61.
    3. Sandro Sapio, 2012. "Modeling the distribution of day-ahead electricity returns: a comparison," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1935-1949, December.
    4. Avci-Surucu, Ezgi & Aydogan, A. Kursat & Akgul, Doganbey, 2016. "Bidding structure, market efficiency and persistence in a multi-time tariff setting," Energy Economics, Elsevier, vol. 54(C), pages 77-87.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:recind:rei_0154-3229_2004_num_107_1_3053. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Equipe PERSEE). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.