IDEAS home Printed from https://ideas.repec.org/p/ssa/lemwps/2009-21.html
   My bibliography  Save this paper

Modelling the distribution of day-ahead electricity returns: a comparison

Author

Listed:
  • Sandro Sapio

Abstract

This paper contributes to characterizing the probability density of the price returns in some European day-ahead electricity markets (NordPool, APX, Powernext) by fitting some flexible and general families of distributions, such as the alpha-stable, Normal Inverse Gaussian (NIG), Exponential Power (EP), and Asymmetric Exponential Power (AEP), and comparing their goodness of fit. The alpha-stable and the NIG systematically outperform the EP and AEP models, but the tail behaviours and the skewness are sensitive to the definition of returns and to the deseasonalization methods. In particular, the logarithmic transform and volatility rescaling tend to dampen the extreme returns.

Suggested Citation

  • Sandro Sapio, 2009. "Modelling the distribution of day-ahead electricity returns: a comparison," LEM Papers Series 2009/21, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  • Handle: RePEc:ssa:lemwps:2009/21
    as

    Download full text from publisher

    File URL: http://www.lem.sssup.it/WPLem/files/2009-21.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francis X. Diebold & Lee E. Ohanian & Jeremy Berkowitz, 1998. "Dynamic Equilibrium Economies: A Framework for Comparing Models and Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 433-451.
    2. Weron, R & Bierbrauer, M & Trück, S, 2004. "Modeling electricity prices: jump diffusion and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 39-48.
    3. Sandro Sapio, 2004. "Markets Design, Bidding Rules, and Long Memory in Electricity Prices," Revue d'Économie Industrielle, Programme National Persée, vol. 107(1), pages 151-170.
    4. Rafał Weron, 2009. "Heavy-tails and regime-switching in electricity prices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 457-473, July.
    5. Dongfeng Fu & Fabio Pammolli & S. V. Buldyrev & Massimo Riccaboni & Kaushik Matia & Kazuko Yamasaki & H. E. Stanley, 2005. "The Growth of Business Firms: Theoretical Framework and Empirical Evidence," Papers physics/0512005, arXiv.org.
    6. Mount, Timothy D. & Ning, Yumei & Cai, Xiaobin, 2006. "Predicting price spikes in electricity markets using a regime-switching model with time-varying parameters," Energy Economics, Elsevier, vol. 28(1), pages 62-80, January.
    7. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    8. Fong Chan, Kam & Gray, Philip, 2006. "Using extreme value theory to measure value-at-risk for daily electricity spot prices," International Journal of Forecasting, Elsevier, vol. 22(2), pages 283-300.
    9. repec:clg:wpaper:1999-04 is not listed on IDEAS
    10. Choy, S. T. Boris & Walker, Stephen G., 2003. "The extended exponential power distribution and Bayesian robustness," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 227-232, November.
    11. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    12. Apostolos Serletis & John Herbert, 2007. "The Message in North American Energy Prices," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 13, pages 156-171, World Scientific Publishing Co. Pte. Ltd..
    13. Simonsen, Ingve, 2005. "Volatility of power markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 10-20.
    14. Borak, Szymon & Härdle, Wolfgang Karl & Weron, Rafał, 2005. "Stable distributions," SFB 649 Discussion Papers 2005-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Bruno Bosco & Lucia Parisio & Matteo Pelagatti, 2007. "Deregulated Wholesale Electricity Prices in Italy: An Empirical Analysis," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 13(4), pages 415-432, November.
    16. Rafal Weron, 2005. "Heavy tails and electricity prices," HSC Research Reports HSC/05/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    17. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    18. Giulio Bottazzi & Angelo Secchi, 2006. "Explaining the distribution of firm growth rates," RAND Journal of Economics, RAND Corporation, vol. 37(2), pages 235-256, June.
    19. Bottazzi, G. & Sapio, S. & Secchi, A., 2005. "Some statistical investigations on the nature and dynamics of electricity prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 54-61.
    20. repec:kap:iaecre:v:13:y:2007:i:4:p:415-432 is not listed on IDEAS
    21. Bystrom, Hans N. E., 2005. "Extreme value theory and extremely large electricity price changes," International Review of Economics & Finance, Elsevier, vol. 14(1), pages 41-55.
    22. Bruno Bosco & Lucia Parisio & Matteo Pelagatti, 2006. "Deregulated Wholesale Electricity Prices in Italy," Working Papers 20060301, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica, revised Apr 2006.
    23. Giulio Bottazzi & Angelo Secchi, 2006. "Maximum Likelihood Estimation of the Symmetric and Asymmetric Exponential Power Distribution," LEM Papers Series 2006/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    24. Bottazzi, Giulio & Secchi, Angelo, 2003. "Why are distributions of firm growth rates tent-shaped?," Economics Letters, Elsevier, vol. 80(3), pages 415-420, September.
    25. Terry Robinson & Andrzej Baniak, 2002. "The volatility of prices in the English and Welsh electricity pool," Applied Economics, Taylor & Francis Journals, vol. 34(12), pages 1487-1495.
    26. repec:dau:papers:123456789/1433 is not listed on IDEAS
    27. Huisman, Ronald & Mahieu, Ronald, 2003. "Regime jumps in electricity prices," Energy Economics, Elsevier, vol. 25(5), pages 425-434, September.
    28. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    29. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    30. Trueck, Stefan & Weron, Rafal & Wolff, Rodney, 2007. "Outlier Treatment and Robust Approaches for Modeling Electricity Spot Prices," MPRA Paper 4711, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zorana Božić & Dušan Dobromirov & Jovana Arsić & Mladen Radišić & Beata Ślusarczyk, 2020. "Power Exchange Prices: Comparison of Volatility in European Markets," Energies, MDPI, vol. 13(21), pages 1-15, October.
    2. Zorana Zoran Stanković & Milena Nebojsa Rajic & Zorana Božić & Peđa Milosavljević & Ancuța Păcurar & Cristina Borzan & Răzvan Păcurar & Emilia Sabău, 2024. "The Volatility Dynamics of Prices in the European Power Markets during the COVID-19 Pandemic Period," Sustainability, MDPI, vol. 16(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    2. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    3. Sandro Sapio, 2006. "An Empirically Based Model of the Supply Schedule in Day-Ahead Electricity Markets," LEM Papers Series 2006/12, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    4. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.
    5. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    6. Christensen, T.M. & Hurn, A.S. & Lindsay, K.A., 2012. "Forecasting spikes in electricity prices," International Journal of Forecasting, Elsevier, vol. 28(2), pages 400-411.
    7. Per B. Solibakke, 2022. "Step‐ahead spot price densities using daily synchronously reported prices and wind forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 17-42, January.
    8. Le Pen, Yannick & Sévi, Benoît, 2010. "Volatility transmission and volatility impulse response functions in European electricity forward markets," Energy Economics, Elsevier, vol. 32(4), pages 758-770, July.
    9. Mayer, Klaus & Trück, Stefan, 2018. "Electricity markets around the world," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 77-100.
    10. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    11. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    12. Bottazzi, G. & Sapio, S. & Secchi, A., 2005. "Some statistical investigations on the nature and dynamics of electricity prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 54-61.
    13. Lisi, Francesco & Nan, Fany, 2014. "Component estimation for electricity prices: Procedures and comparisons," Energy Economics, Elsevier, vol. 44(C), pages 143-159.
    14. Rubin, Ofir David, 2010. "Equilibrium pricing in electricity markets with wind power," ISU General Staff Papers 201001010800002361, Iowa State University, Department of Economics.
    15. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    16. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "Modeling and forecasting of the long-term seasonal component of the EEX and Nord Pool spot prices," HSC Research Reports HSC/13/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    17. Joanna Janczura & Rafal Weron, 2012. "Inference for Markov-regime switching models of electricity spot prices," HSC Research Reports HSC/12/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    18. Rafał Weron, 2009. "Heavy-tails and regime-switching in electricity prices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 457-473, July.
    19. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    20. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.

    More about this item

    Keywords

    Electricity prices; alpha-stable; Normal Inverse Gaussian; Exponential Power; Asymmetric Exponential Power; goodness-of-fit;
    All these keywords.

    JEL classification:

    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2009/21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/labssit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.