IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/242.html
   My bibliography  Save this paper

Option Formulas for Mean-Reverting Power Prices with Spikes

Author

Listed:
  • de Jong, C.M.
  • Huisman, R.

Abstract

Electricity prices are known to be very volatile and subject to frequent jumps due to system breakdown, demand shocks, and inelastic supply. Appropriate pricing, portfolio, and risk management models should incorporate these spikes. We develop a framework to price European-style options that are consistent with the possibility of market spikes. The pricing framework is based on a regime jump model that disentangles mean-reversion from the spikes. In the model the spikes are truly time-specific events and therefore independent from the mean-reverting price process. This closely resembles the characteristics of electricity prices, as we show with Dutch APX spot price data in the period January 2001 till June 2002. Thanks to the independence of the two price processes in the model, we break derivative prices down in a mean-reverting value and a spike value. We use this result to show how the model can be made consistent with forward prices in the market and present closed-form formulas for European-style options.

Suggested Citation

  • de Jong, C.M. & Huisman, R., 2002. "Option Formulas for Mean-Reverting Power Prices with Spikes," ERIM Report Series Research in Management ERS-2002-96-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:242
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/242/erimrs20021022160701.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Les Clewlow & Chris Strickland, 1999. "Valuing Energy Options in a One Factor Model Fitted to Forward Prices," Research Paper Series 10, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Schwartz, Eduardo S, 1997. " The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    4. Longstaff, Francis A. & Santa-Clara, Pedro & Schwartz, Eduardo S., 2001. "Throwing away a billion dollars: the cost of suboptimal exercise strategies in the swaptions market," Journal of Financial Economics, Elsevier, vol. 62(1), pages 39-66, October.
    5. Miltersen, Kristian R. & Schwartz, Eduardo S., 1998. "Pricing of Options on Commodity Futures with Stochastic Term Structures of Convenience Yields and Interest Rates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(01), pages 33-59, March.
    6. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    9. Hilliard, Jimmy E. & Reis, Jorge, 1998. "Valuation of Commodity Futures and Options under Stochastic Convenience Yields, Interest Rates, and Jump Diffusions in the Spot," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(01), pages 61-86, March.
    10. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
    2. Joanna Janczura & Rafal Weron, 2012. "Inference for Markov-regime switching models of electricity spot prices," HSC Research Reports HSC/12/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    3. Melanie Houllier & Lilian M. De Menezes & Michael Tamvakis, 2014. "Time Varying Long Run Dynamics And Convergence In The Uk Energy Market," EcoMod2014 6970, EcoMod.
    4. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    5. Kurucak, Abdurrahman & Shcherbakova, Anastasia, 2016. "Estimating the hedging value of an energy exchange in Turkey to a retail power consumer," Energy, Elsevier, vol. 101(C), pages 16-26.
    6. repec:eee:finlet:v:24:y:2018:i:c:p:301-312 is not listed on IDEAS
    7. Kanamura, Takashi & O[combining macron]hashi, Kazuhiko, 2008. "On transition probabilities of regime switching in electricity prices," Energy Economics, Elsevier, vol. 30(3), pages 1158-1172, May.
    8. Kemppi, Heikki & Perrels, Adriaan, 2003. "Liberalised Electricity Markets - Strengths and Weaknesses in Finland and Nordpool," Research Reports 97, VATT Institute for Economic Research.
    9. Frömmel, Michael & Han, Xing & Kratochvil, Stepan, 2014. "Modeling the daily electricity price volatility with realized measures," Energy Economics, Elsevier, vol. 44(C), pages 492-502.
    10. Mari, Carlo, 2006. "Regime-switching characterization of electricity prices dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 552-564.
    11. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    12. Markus Burger & Bernhard Klar & Alfred Muller & Gero Schindlmayr, 2004. "A spot market model for pricing derivatives in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 109-122.
    13. de Menezes, Lilian M. & Houllier, Melanie A. & Tamvakis, Michael, 2016. "Time-varying convergence in European electricity spot markets and their association with carbon and fuel prices," Energy Policy, Elsevier, vol. 88(C), pages 613-627.
    14. Stuart Thomas & Vikash Ramiah & Heather Mitchell & Richard Heaney, 2011. "Seasonal factors and outlier effects in rate of return on electricity spot prices in Australia's National Electricity Market," Applied Economics, Taylor & Francis Journals, vol. 43(3), pages 355-369.
    15. Bruno Bosco & Lucia Parisio & Matteo Pelagatti, 2006. "Deregulated Wholesale Electricity Prices in Italy," Working Papers 20060301, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica, revised Apr 2006.
    16. Weron, Rafal & Janczura, Joanna, 2010. "Efficient estimation of Markov regime-switching models: An application to electricity wholesale market prices," MPRA Paper 26628, University Library of Munich, Germany.
    17. Higgs, Helen & Worthington, Andrew, 2008. "Stochastic price modeling of high volatility, mean-reverting, spike-prone commodities: The Australian wholesale spot electricity market," Energy Economics, Elsevier, vol. 30(6), pages 3172-3185, November.
    18. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
    19. repec:spr:compst:v:79:y:2014:i:1:p:1-30 is not listed on IDEAS
    20. Najeh Chaâbane, 2014. "A novel auto-regressive fractionally integrated moving average--least-squares support vector machine model for electricity spot prices prediction," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 635-651, March.
    21. Möller, Christoph & Rachev, Svetlozar T. & Fabozzi, Frank J., 2011. "Balancing energy strategies in electricity portfolio management," Energy Economics, Elsevier, vol. 33(1), pages 2-11, January.
    22. Zhuliang Chen & Peter Forsyth, 2010. "Implications of a regime-switching model on natural gas storage valuation and optimal operation," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 159-176.
    23. Joanna Janczura, 2014. "Pricing electricity derivatives within a Markov regime-switching model: a risk premium approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 1-30, February.

    More about this item

    Keywords

    electricity price modelling; energy markets; mean reversion; option pricing; power spikes;

    JEL classification:

    • G19 - Financial Economics - - General Financial Markets - - - Other
    • G3 - Financial Economics - - Corporate Finance and Governance
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M41 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Accounting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:242. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub). General contact details of provider: http://edirc.repec.org/data/erimanl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.