IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v114y2022ics0140988322004315.html
   My bibliography  Save this article

Jumps in commodity prices: New approaches for pricing plain vanilla options

Author

Listed:
  • Crosby, John
  • Frau, Carme

Abstract

We present a new term-structure model for commodity futures prices based on Trolle and Schwartz (2009), which we extend by incorporating multiple jump processes. Our work explores the valuation of plain vanilla options on futures prices when the spot price follows a log-normal process, the forward cost of carry curve and the volatility are stochastic variables, and the spot price and the forward cost of carry allow for time-dampening jumps. We obtain an analytical representation of the characteristic function of the futures prices and, hence, also for plain vanilla option prices using the fast Fourier transform methodology. We price options on WTI crude oil futures contracts using our model and extant models. We obtain higher accuracy than earlier models and save significantly in computing time.

Suggested Citation

  • Crosby, John & Frau, Carme, 2022. "Jumps in commodity prices: New approaches for pricing plain vanilla options," Energy Economics, Elsevier, vol. 114(C).
  • Handle: RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322004315
    DOI: 10.1016/j.eneco.2022.106302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322004315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. R. Miltersen, 2003. "Commodity price modelling that matches current observables: a new approach," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 51-58.
    2. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    3. Leif Andersen, 2010. "Markov models for commodity futures: theory and practice," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 831-854.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. John Crosby, 2008. "A multi-factor jump-diffusion model for commodities," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 181-200.
    6. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    7. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    8. Bernard Wong & C. C. Heyde, 2006. "On changes of measure in stochastic volatility models," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-13, December.
    9. Jaime Casassus & Pierre Collin‐Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
    10. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    11. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    12. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    13. Les Clewlow & Chris Strickland, 1999. "Valuing Energy Options in a One Factor Model Fitted to Forward Prices," Research Paper Series 10, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    15. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    16. Xuemin Yan, 2002. "Valuation of commodity derivatives in a new multi-factor model," Review of Derivatives Research, Springer, vol. 5(3), pages 251-271, October.
    17. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    18. Miltersen, Kristian R. & Schwartz, Eduardo S., 1998. "Pricing of Options on Commodity Futures with Stochastic Term Structures of Convenience Yields and Interest Rates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(1), pages 33-59, March.
    19. Martin J. Nielsen & Eduardo S. Schwartz, 2004. "Theory of Storage and the Pricing of Commodity Claims," Review of Derivatives Research, Springer, vol. 7(1), pages 5-24.
    20. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    21. Cortazar, Gonzalo & Schwartz, Eduardo S., 2003. "Implementing a stochastic model for oil futures prices," Energy Economics, Elsevier, vol. 25(3), pages 215-238, May.
    22. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    23. Les Clewlow & Chris Strickland, 1999. "A Multi-Factor Model for Energy Derivatives," Research Paper Series 28, Quantitative Finance Research Centre, University of Technology, Sydney.
    24. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    25. Hilliard, Jimmy E. & Reis, Jorge, 1998. "Valuation of Commodity Futures and Options under Stochastic Convenience Yields, Interest Rates, and Jump Diffusions in the Spot," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(1), pages 61-86, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Ling & Wang, Jieyu, 2023. "Random sources correlations and carbon futures pricing," International Review of Financial Analysis, Elsevier, vol. 86(C).
    2. Mehrdoust, Farshid & Noorani, Idin & Kanniainen, Juho, 2024. "Valuation of option price in commodity markets described by a Markov-switching model: A case study of WTI crude oil market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 228-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cortazar, Gonzalo & Lopez, Matias & Naranjo, Lorenzo, 2017. "A multifactor stochastic volatility model of commodity prices," Energy Economics, Elsevier, vol. 67(C), pages 182-201.
    2. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    3. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    4. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013.
    5. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    6. Anders B. Trolle & Eduardo S. Schwartz, 2006. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," NBER Working Papers 12744, National Bureau of Economic Research, Inc.
    7. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    8. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    9. Gonzalo Cortazar & Simon Gutierrez & Hector Ortega, 2016. "Empirical Performance of Commodity Pricing Models: When is it Worthwhile to Use a Stochastic Volatility Specification?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(5), pages 457-487, May.
    10. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    11. Bisht Deepak & Laha, A. K., 2017. "Pricing Option on Commodity Futures under String Shock," IIMA Working Papers WP 2017-07-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. John Crosby, 2008. "A multi-factor jump-diffusion model for commodities," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 181-200.
    13. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, December.
    14. Cheng, Benjamin & Nikitopoulos, Christina Sklibosios & Schlögl, Erik, 2018. "Pricing of long-dated commodity derivatives: Do stochastic interest rates matter?," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 148-166.
    15. Finbarr Murphy & Ehud Ronn, 2015. "The valuation and information content of options on crude-oil futures contracts," Review of Derivatives Research, Springer, vol. 18(2), pages 95-106, July.
    16. Feng, Ling & Wang, Jieyu, 2023. "Random sources correlations and carbon futures pricing," International Review of Financial Analysis, Elsevier, vol. 86(C).
    17. Chih-Chen Hsu & An-Sing Chen & Shih-Kuei Lin & Ting-Fu Chen, 2017. "The affine styled-facts price dynamics for the natural gas: evidence from daily returns and option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(3), pages 819-848, April.
    18. Leif Andersen, 2010. "Markov models for commodity futures: theory and practice," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 831-854.
    19. Hilliard, Jimmy E. & Hilliard, Jitka, 2019. "A jump-diffusion model for pricing and hedging with margined options: An application to Brent crude oil contracts," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 137-155.
    20. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.

    More about this item

    Keywords

    Commodities; Crude oil; Futures prices; Option pricing; Fast Fourier transform; Term-structure model; Analytical solution; Stochastic volatility; Jump–diffusion;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322004315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.