IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Regime Switching Long Memory Model for Electricity Prices

  • Niels Haldrup
  • Morten O. Nielsen

    ()

    (Department of Economics, University of Aarhus, Denmark)

In this paper we develop a regime switching model which can generate long memory (fractional integration) in each of the regime states. This property is relevant in a number of cases. For instance, the deregulated market for electricity power in the Nordic countries is characterized by electricity spot prices with a high degree of long memory. It occurs that in some time periods bilateral prices are identical whereas in other periods the prices differ. The latter occurs when a capacity congestion exists across regions and multiple price areas will result. If the price series are fractionally integrated this means that in some regimes, an extreme form of fractional cointegration amongst prices will exist. We define a Markov switching fractional integration model from which the fractional orders of integration in separate states can be estimated using Maximum Likelihood techniques. The model is adapted to data for the Nordic electricity spot market, and we find that regime swithing and long memory are empirically relevant to co-exist. In particular, we find that the price behaviour for single markets can be very different depending upon the presence or absence of bottlenecks in electricity transmission. Using Monte Carlo forecasting we find that the regime switching model appears to be especially attractive in forecasting relative prices.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/afn/wp/04/wp04_02.pdf
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series Economics Working Papers with number 2004-2.

as
in new window

Length: 30
Date of creation: 02 Apr 2004
Date of revision:
Handle: RePEc:aah:aarhec:2004-2
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Engle, R. F. & Granger, C. W. J. & Hallman, J. J., 1989. "Merging short-and long-run forecasts : An application of seasonal cointegration to monthly electricity sales forecasting," Journal of Econometrics, Elsevier, vol. 40(1), pages 45-62, January.
  2. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, June.
  3. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
  4. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
  5. Phillips, Peter C. B. & Jin, Sainan, 2002. "The KPSS test with seasonal dummies," Economics Letters, Elsevier, vol. 77(2), pages 239-243, October.
  6. Crew, Michael A & Fernando, Chitru S & Kleindorfer, Paul R, 1995. "The Theory of Peak-Load Pricing: A Survey," Journal of Regulatory Economics, Springer, vol. 8(3), pages 215-48, November.
  7. Marius Ooms & M. Angeles Carnero & Siem Jan Koopman, 2004. "Periodic Heteroskedastic RegARFIMA models for daily electricity spot prices," Econometric Society 2004 Australasian Meetings 158, Econometric Society.
  8. Peter C.B. Phillips, 1985. "Time Series Regression with a Unit Root," Cowles Foundation Discussion Papers 740R, Cowles Foundation for Research in Economics, Yale University, revised Feb 1986.
  9. Lee, D. & Schmidt, P., 1993. "On the Power of the KPSS Test of Stationarity Against Fractionally-Integrated Alternatives," Papers 9111, Michigan State - Econometrics and Economic Theory.
  10. Philip Hans Franses & Marius Ooms & Charles S. Bos, 1999. "Long memory and level shifts: Re-analyzing inflation rates," Empirical Economics, Springer, vol. 24(3), pages 427-449.
  11. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  12. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
  13. Morten Oe. Nielsen, . "Efficient Likelihold Inference in Nonstationary Univariate Models," Economics Working Papers 2001-8, School of Economics and Management, University of Aarhus.
  14. repec:cup:cbooks:9780521016919 is not listed on IDEAS
  15. Haldrup, Niels & Nielsen, Morten Orregaard, 2007. "Estimation of fractional integration in the presence of data noise," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3100-3114, March.
  16. Granger, Clive W.J. & Hyung, Namwon, 1999. "Occasional Structural Breaks and Long Memory," University of California at San Diego, Economics Working Paper Series qt4d60t4jh, Department of Economics, UC San Diego.
  17. repec:dgr:uvatin:20030071 is not listed on IDEAS
  18. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
  19. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
  20. Kleindorfer, Paul R & Fernando, Chitru S, 1993. "Peak-Load Pricing and Reliability under Uncertainty," Journal of Regulatory Economics, Springer, vol. 5(1), pages 5-23, March.
  21. Fabra, Natalia & Toro, Juan, 2005. "Price wars and collusion in the Spanish electricity market," International Journal of Industrial Organization, Elsevier, vol. 23(3-4), pages 155-181, April.
  22. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
  23. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
  24. Hansen, Bruce E. & Seo, Byeongseon, 2002. "Testing for two-regime threshold cointegration in vector error-correction models," Journal of Econometrics, Elsevier, vol. 110(2), pages 293-318, October.
  25. repec:cup:cbooks:9780521816632 is not listed on IDEAS
  26. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  27. repec:cup:cbooks:9780521368629 is not listed on IDEAS
  28. Massimiliano Marcellino & Grayham E. Mizon & Hans-Martin Krolzig, 2002. "A Markov-switching vector equilibrium correction model of the UK labour market," Empirical Economics, Springer, vol. 27(2), pages 233-254.
  29. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
  30. Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-76, March.
  31. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  32. Davidson, James, 2004. "Forecasting Markov-switching dynamic, conditionally heteroscedastic processes," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 137-147, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:aarhec:2004-2. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.