IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v163y2011i1p29-41.html
   My bibliography  Save this article

Dynamic factors in the presence of blocks

Author

Listed:
  • Hallin, Marc
  • Liska, Roman

Abstract

Macroeconometric data often come under the form of large panels of time series, themselves decomposing into smaller but still quite large subpanels or blocks. We show how the dynamic factor analysis method proposed in Forni et al. (2000), combined with the identification method of Hallin and Liska (2007), allows for identifying and estimating joint and block-specific common factors. This leads to a more sophisticated analysis of the structures of dynamic interrelations within and between the blocks in such datasets, along with an informative decomposition of explained variances. The method is illustrated with an analysis of a dataset of Industrial Production Indices for France, Germany, and Italy.

Suggested Citation

  • Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
  • Handle: RePEc:eee:econom:v:163:y:2011:i:1:p:29-41
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407610002083
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elena Angelini & Jérôme Henry & Ricardo Mestre, 2001. "Diffusion index-based inflation forecasts for the euro area," BIS Papers chapters,in: Bank for International Settlements (ed.), Empirical studies of structural changes and inflation, volume 3, pages 109-138 Bank for International Settlements.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    3. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters,in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
    4. Martin Schneider & Martin Spitzer, 2004. "Forecasting Austrian GDP using the generalized dynamic factor model," Working Papers 89, Oesterreichische Nationalbank (Austrian Central Bank).
    5. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    6. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
    7. Yao, Tong, 2008. "Dynamic Factors and the Source of Momentum Profits," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 211-226, April.
    8. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
    9. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    10. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    11. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
    12. Emanuel Moench & Serena Ng & Simon Potter, 2013. "Dynamic Hierarchical Factor Model," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1811-1817, December.
    13. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    14. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    15. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1319-1347, October.
    16. Hallin, Marc & Mathias, Charles & Pirotte, Hugues & Veredas, David, 2011. "Market liquidity as dynamic factors," Journal of Econometrics, Elsevier, vol. 163(1), pages 42-50, July.
    17. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    18. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    19. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
    20. Altissimo, Filippo & Bassanetti, Antonio & Cristadoro, Riccardo & Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia & Veronese, Giovanni, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    21. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    22. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    23. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    24. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2006. "VARs, common factors and the empirical validation of equilibrium business cycle models," Journal of Econometrics, Elsevier, vol. 132(1), pages 257-279, May.
    25. Chamberlain, Gary, 1983. "Funds, Factors, and Diversification in Arbitrage Pricing Models," Econometrica, Econometric Society, vol. 51(5), pages 1305-1323, September.
    26. Domenico Giannone & Troy D. Matheson, 2007. "A New Core Inflation Indicator for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 145-180, December.
    27. Aiolfi, Marco & Catão, Luis A.V. & Timmermann, Allan, 2011. "Common factors in Latin America's business cycles," Journal of Development Economics, Elsevier, pages 212-228.
    28. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    29. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    30. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hallin, Marc & Mathias, Charles & Pirotte, Hugues & Veredas, David, 2011. "Market liquidity as dynamic factors," Journal of Econometrics, Elsevier, vol. 163(1), pages 42-50, July.
    2. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," SFB 649 Discussion Papers SFB649DP2014-004, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    4. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    5. repec:eee:econom:v:201:y:2017:i:2:p:307-321 is not listed on IDEAS
    6. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
    7. Jörg Breitung & In Choi, 2013. "Factor models," Chapters,in: Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 11, pages 249-265 Edward Elgar Publishing.
      • In Choi & Jorg Breitung, 2011. "Factor models," Working Papers 1121, Research Institute for Market Economy, Sogang University, revised Dec 2011.
    8. Breitung, Jörg & Eickmeier, Sandra, 2014. "Analyzing business and financial cycles using multi-level factor models," Discussion Papers 11/2014, Deutsche Bundesbank.
    9. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    10. Rodríguez Caballero, Carlos Vladimir & Ergemen, Yunus Emre, 2017. "Estimation of a Dynamic Multilevel Factor Model with possible long-range dependence," DES - Working Papers. Statistics and Econometrics. WS 24614, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Matteo Barigozzi & Lorenzo Trapani, 2017. "Sequential testing for structural stability in approximate factor models," Papers 1708.02786, arXiv.org.
    12. Yunus Emre Ergemen & Carlos Vladimir Rodríguez-Caballero, 2016. "A Dynamic Multi-Level Factor Model with Long-Range Dependence," CREATES Research Papers 2016-23, Department of Economics and Business Economics, Aarhus University.
    13. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
    14. Heaton, Chris & Solo, Victor, 2012. "Estimation of high-dimensional linear factor models with grouped variables," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 348-367.
    15. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:163:y:2011:i:1:p:29-41. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.