IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Dynamic factors in the presence of blocks

  • Hallin, Marc
  • Liska, Roman

Macroeconometric data often come under the form of large panels of time series, themselves decomposing into smaller but still quite large subpanels or blocks. We show how the dynamic factor analysis method proposed in Forni et al. (2000), combined with the identification method of Hallin and Liska (2007), allows for identifying and estimating joint and block-specific common factors. This leads to a more sophisticated analysis of the structures of dynamic interrelations within and between the blocks in such datasets, along with an informative decomposition of explained variances. The method is illustrated with an analysis of a dataset of Industrial Production Indices for France, Germany, and Italy.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304407610002083
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 163 (2011)
Issue (Month): 1 (July)
Pages: 29-41

as
in new window

Handle: RePEc:eee:econom:v:163:y:2011:i:1:p:29-41
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Allan Timmermann & Luis Catão & Marco Aiolfi, 2006. "Common Factors in Latin America's Business Cycles," IMF Working Papers 06/49, International Monetary Fund.
  2. Angelini, Elena & Henry, Jérôme & Mestre, Ricardo, 2001. "Diffusion index-based inflation forecasts for the euro area," Working Paper Series 0061, European Central Bank.
  3. Giannone, Domenico & Matheson, Troy, 2007. "A New Core Inflation Indicator for New Zealand," CEPR Discussion Papers 6469, C.E.P.R. Discussion Papers.
  4. Altissimo, Filippo & Bassanetti, Antonio & Cristadoro, Riccardo & Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia & Veronese, Giovanni, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
  5. Gary Chamberlain & Michael Rothschild, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," NBER Working Papers 0996, National Bureau of Economic Research, Inc.
  6. Martin Schneider & Martin Spitzer, 2004. "Forecasting Austrian GDP using the generalized dynamic factor model," Working Papers 89, Oesterreichische Nationalbank (Austrian Central Bank).
  7. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary policy in real time," ULB Institutional Repository 2013/6401, ULB -- Universite Libre de Bruxelles.
    • Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
  8. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  9. Emanuel Moench & Serena Ng & Simon Potter, 2013. "Dynamic Hierarchical Factor Model," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1811-1817, December.
  10. Mario Forni & Domenico Giannone & Marco Lippi & Lucrezia Reichlin, 2007. "Opening the Black Box: Structural Factor Models with Large Cross-Sections," Center for Economic Research (RECent) 008, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
  11. Marc Hallin & Mario Forni & Marco Lippi & Lucrezia Reichlin, 2003. "Do financial variables help forecasting inflation and real activity in the Euro area ?," ULB Institutional Repository 2013/2123, ULB -- Universite Libre de Bruxelles.
  12. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
  13. Chamberlain, Gary, 1983. "Funds, Factors, and Diversification in Arbitrage Pricing Models," Econometrica, Econometric Society, vol. 51(5), pages 1305-23, September.
  14. Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
  15. Bruneau, C. & De Bandt, O. & Flageollet, A. & Michaux, E., 2003. "Forecasting Inflation using Economic Indicators: the Case of France," Working papers 101, Banque de France.
  16. Schumacher, Christian, 2005. "Forecasting German GDP using alternative factor models based on large datasets," Discussion Paper Series 1: Economic Studies 2005,24, Deutsche Bundesbank, Research Centre.
  17. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
  18. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," CEPR Discussion Papers 3432, C.E.P.R. Discussion Papers.
  19. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  20. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
  21. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
  22. Domenica Giannone & Lucrezia Reichlin & Luca Sala, 2004. "VARs, Common Factors and the Empirical Validation of Equilibrium Business Cycle Models," Working Papers 258, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  23. Hallin, Marc & Mathias, Charles & Pirotte, Hugues & Veredas, David, 2011. "Market liquidity as dynamic factors," Journal of Econometrics, Elsevier, vol. 163(1), pages 42-50, July.
  24. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  25. Forni, Mario & Lippi, Marco, 2000. "The Generalized Dynamic Factor Model: Representation Theory," CEPR Discussion Papers 2509, C.E.P.R. Discussion Papers.
  26. Yao, Tong, 2008. "Dynamic Factors and the Source of Momentum Profits," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 211-226, April.
  27. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  28. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
  29. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  30. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:163:y:2011:i:1:p:29-41. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.