IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

A new core inflation indicator for New Zealand

This paper introduces a new indicator of core inflation for New Zealand, estimated using a dynamic factor model and disaggregate price data. Using disaggregate price data we can directly compare the predictive performance of our core indicator with a wide range of other ‘core inflation’ measures estimated from disaggregate prices, such as the weighted median and the trimmed mean. Predictive performance is assessed relative to a centred 2 year moving average of past and future annual inflation outcomes. The 2 year centred moving average is used as an analytical approximation of the inflation target from the PTA, which requires the Reserve Bank to keep annual inflation between 1 and 3 per cent on average over the medium term. We find that our indicator produces relatively good estimates of this characterisation of core inflation when compared with estimates derived from a range of other models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.rbnz.govt.nz/-/media/ReserveBank/Files/Publications/Discussion%20papers/2006/dp06-10.pdf
Download Restriction: no

Paper provided by Reserve Bank of New Zealand in its series Reserve Bank of New Zealand Discussion Paper Series with number DP2006/02.

as
in new window

Length: 44 p.
Date of creation: Oct 2006
Date of revision:
Handle: RePEc:nzb:nzbdps:2006/10
Contact details of provider: Postal:
P.O. Box 2498, Wellington

Phone: 64 4 471-3767
Fax: 64 4 471-2270
Web page: http://www.rbnz.govt.nz
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2001. "Nominal rigidities and the dynamic effects of a shock to monetary policy," Proceedings, Federal Reserve Bank of San Francisco, issue Jun.
  2. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
  3. Michael F. Bryan & Stephen G. Cecchetti, 1994. "Measuring Core Inflation," NBER Chapters, in: Monetary Policy, pages 195-219 National Bureau of Economic Research, Inc.
  4. Forni M. & Hallin M., 2003. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Computing in Economics and Finance 2003 143, Society for Computational Economics.
  5. Mario Forni & Domenico Giannone & Marco Lippi & Lucrezia Reichlin, 2008. "Opening the Black Box: Structural Factor Models with Large Cross-Sections," Working Papers ECARES 2008_036, ULB -- Universite Libre de Bruxelles.
  6. Troy D. Matheson, 2006. "Factor Model Forecasts for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 2(2), May.
  7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  8. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
  9. Mario Forno & Marco Lippi & Lucrezia Reichlin & Filippo Altissimo & Antonio Bassanetti, 2003. "Eurocoin: A Real Time Coincident Indicator Of The Euro Area Business Cycle," Computing in Economics and Finance 2003 242, Society for Computational Economics.
  10. Cristadoro, Riccardo & Forni, Mario & Reichlin, Lucrezia & Veronese, Giovanni, 2005. "A Core Inflation Indicator for the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 539-60, June.
  11. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  12. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  13. Domenico Giannone & Troy Matheson, 2007. "A new core inflation indicator for New Zealand," ULB Institutional Repository 2013/6407, ULB -- Universite Libre de Bruxelles.
  14. Timothy Cogley, 1998. "A simple adaptive measure of core inflation," Working Papers in Applied Economic Theory 98-06, Federal Reserve Bank of San Francisco.
  15. Marlene Amstad & Simon M. Potter, 2009. "Real time underlying inflation gauges for monetary policymakers," Staff Reports 420, Federal Reserve Bank of New York.
  16. Mark A. Wynne, 1997. "Measuring short-run inflation for central bankers - commentary," Review, Federal Reserve Bank of St. Louis, issue May, pages 161-167.
  17. Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-08, May.
  18. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
  19. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, 05.
  20. N. Gregory Mankiw, 1994. "Monetary Policy," NBER Books, National Bureau of Economic Research, Inc, number greg94-1, September.
  21. Amstad, Marlene & Fischer, Andreas M, 2004. "Sequential Information Flow and Real-Time Diagnosis of Swiss Inflation: Intra-Monthly DCF Estimates for a Low-Inflation Environment," CEPR Discussion Papers 4627, C.E.P.R. Discussion Papers.
  22. Forni, Mario & Lippi, Marco & Reichlin, Lucrezia, 2003. "Opening the Black Box: Structural Factor Models versus Structural VARs," CEPR Discussion Papers 4133, C.E.P.R. Discussion Papers.
  23. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nzb:nzbdps:2006/10. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Reserve Bank of New Zealand Knowledge Centre)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.