IDEAS home Printed from https://ideas.repec.org/p/snb/snbwpa/2008-05.html
   My bibliography  Save this paper

Are Weekly Inflation Forecasts Informative?

Author

Listed:
  • Marlene Amstad
  • Andreas M. Fischer

Abstract

Are weekly inflation forecasts informative? Although several central banks review and discuss monetary policy issues on a bi-weekly basis, there have been few attempts by analysts to construct systematic estimates of core inflation that supports such a decision-making schedule. The timeliness of news releases and macroeconomic revisions are recognized to be an important information source in real-time estimation. We incorporate real-time information from macroeconomic releases and revisions into our weekly updates of monthly Swiss core inflation using a common factor procedure. The weekly estimates for Swiss core inflation find that it is worthwhile to update the forecast at least twice a month.

Suggested Citation

  • Marlene Amstad & Andreas M. Fischer, 2008. "Are Weekly Inflation Forecasts Informative?," Working Papers 2008-05, Swiss National Bank.
  • Handle: RePEc:snb:snbwpa:2008-05
    as

    Download full text from publisher

    File URL: https://www.snb.ch/en/publications/research/working-papers/2008/working_paper_2008_05
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    2. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    3. Kevin L. Kliesen & Frank A. Schmid, 2004. "Monetary policy actions, macroeconomic data releases, and inflation expectations," Review, Federal Reserve Bank of St. Louis, vol. 86(May), pages 9-22.
    4. Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario & Altissimo, Filippo & Cristadoro, Riccardo & Veronese, Giovanni & Bassanetti, Antonio, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    5. Fischer, Andreas & Amstad, Marlene, 2004. "Sequential Information Flow and Real-Time Diagnosis of Swiss Inflation: Intra-Monthly DCF Estimates for a Low-Inflation Environ," CEPR Discussion Papers 4627, C.E.P.R. Discussion Papers.
    6. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    7. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    8. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    9. Andreas Fischer & Marlene Amstad, 2004. "Sequential Information Flow and Real-Time Diagnosis of Swiss Inflation: Intra-Monthly DCF Estimates for a Low-Inflation Environment," Working Papers 04.06, Swiss National Bank, Study Center Gerzensee.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
    12. Gavin, William T. & Mandal, Rachel J., 2003. "Evaluating FOMC forecasts," International Journal of Forecasting, Elsevier, vol. 19(4), pages 655-667.
    13. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    14. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    15. Marlene Amstad & Andreas M. Fischer, 2005. "Time-varying pass-through from import prices to consumer prices: evidence from an event study with real-time data," Staff Reports 228, Federal Reserve Bank of New York.
    16. Martin D. D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macroeconomy," International Journal of Central Banking, International Journal of Central Banking, vol. 1(2), September.
    17. Israel Sancho & maximo Camacho, 2002. "Spanish diffusion indexes," Computing in Economics and Finance 2002 276, Society for Computational Economics.
    18. Marc-André Gosselin & Greg Tkacz, 2001. "Evaluating Factor Models: An Application to Forecasting Inflation in Canada," Staff Working Papers 01-18, Bank of Canada.
    19. Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    20. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marlene Amstad & Ye Huan & Guonan Ma, 2014. "Developing an underlying inflation gauge for China," BIS Working Papers 465, Bank for International Settlements.
    2. Siliverstovs Boriss & Kholodilin Konstantin A., 2012. "Assessing the Real-Time Informational Content of Macroeconomic Data Releases for Now-/Forecasting GDP: Evidence for Switzerland," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(4), pages 429-444, August.
    3. Amstad, Marlene & Fischer, Andreas M., 2010. "Monthly pass-through ratios," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1202-1213, July.
    4. Marlene Amstad & Andreas M. Fischer, 2009. "Do macroeconomic announcements move inflation forecasts?," Review, Federal Reserve Bank of St. Louis, vol. 91(Sep), pages 507-518.
    5. repec:zbw:bofitp:2018_011 is not listed on IDEAS
    6. Marlene Amstad & Simon M. Potter & Robert W. Rich, 2017. "The New York Fed Staff Underlying Inflation Gauge (UIG)," Economic Policy Review, Federal Reserve Bank of New York, issue 23-2, pages 1-32.
    7. Amstad, Marlene & Ye, Huan & Ma, Guonan, 2018. "Developing an underlying inflation gauge for China," BOFIT Discussion Papers 11/2018, Bank of Finland Institute for Emerging Economies (BOFIT).
    8. Ronald Indergand & Stefan Leist, 2014. "A Real-Time Data Set for Switzerland," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(IV), pages 331-352, December.
    9. Marlene Amstad & Simon M. Potter, 2009. "Real time underlying inflation gauges for monetary policymakers," Staff Reports 420, Federal Reserve Bank of New York.
    10. Marlene Amstad & Simon M. Potter & Robert W. Rich, 2014. "The FRBNY staff underlying inflation gauge: UIG," Staff Reports 672, Federal Reserve Bank of New York.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    3. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    4. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    5. Amstad, Marlene & Fischer, Andreas M., 2010. "Monthly pass-through ratios," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1202-1213, July.
    6. Abberger, Klaus & Graff, Michael & Siliverstovs, Boriss & Sturm, Jan-Egbert, 2018. "Using rule-based updating procedures to improve the performance of composite indicators," Economic Modelling, Elsevier, vol. 68(C), pages 127-144.
    7. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    8. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    9. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
    10. Domenico Giannone & Troy D. Matheson, 2007. "A New Core Inflation Indicator for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 145-180, December.
    11. Marlene Amstad & Andreas M. Fischer, 2009. "Do macroeconomic announcements move inflation forecasts?," Review, Federal Reserve Bank of St. Louis, vol. 91(Sep), pages 507-518.
    12. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    13. Muriel Nguiffo-Boyom, 2014. "2007-2013: This is what the indicator told us ? Evaluating the performance of real-time nowcasts from a dynamic factor model," BCL working papers 88, Central Bank of Luxembourg.
    14. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    15. Dimitra Lamprou, 2015. "Nowcasting GDP in Greece: A Note on Forecasting Improvements from the Use of Bridge Models," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 13(1), pages 85-100.
    16. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
    17. Marlene Amstad & Andreas Fischer, 2005. "Shock Identification of Macroeconomic Forecasts based on Daily Panels," Working Papers 05.02, Swiss National Bank, Study Center Gerzensee.
    18. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    19. Bragoli, Daniela, 2017. "Now-casting the Japanese economy," International Journal of Forecasting, Elsevier, vol. 33(2), pages 390-402.
    20. Ard Reijer & Andreas Johansson, 2019. "Nowcasting Swedish GDP with a large and unbalanced data set," Empirical Economics, Springer, vol. 57(4), pages 1351-1373, October.

    More about this item

    Keywords

    Inflation; Common Factors; Sequential Information Flow;
    All these keywords.

    JEL classification:

    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:snb:snbwpa:2008-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Enzo Rossi (email available below). General contact details of provider: https://edirc.repec.org/data/snbgvch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.