IDEAS home Printed from https://ideas.repec.org/a/fip/fednep/00042.html
   My bibliography  Save this article

The New York Fed Staff Underlying Inflation Gauge (UIG)

Author

Listed:
  • Marlene Amstad
  • Simon M. Potter
  • Robert W. Rich

Abstract

A measure of underlying inflation that uses all relevant information, is available in real time, and forecasts inflation better than traditional underlying inflation measures?such as core inflation measures?would greatly benefit monetary policymakers, market participants, and the public. This article presents the New York Fed Staff Underlying Inflation Gauge (UIG) for the consumer price index and the personal consumption expenditures deflator. Using a dynamic factor model approach, the UIG is derived from a broad data set that extends beyond price series to include a wide range of nominal, real, and financial variables. This modeling approach also makes it possible to combine information simultaneously from the cross-sectional and time dimensions of the sample in a unified framework. In addition, the UIG can be updated on a daily basis to closely monitor changes in underlying inflation?a feature that is especially useful when sudden and large economic fluctuations occur, as was the case during the 2008 global financial crisis. Lastly, the UIG displays greater forecast accuracy than many measures of core inflation. Editor?s note: This article?s data appendix has been updated to reflect the removal of a duplicate price series (CPI-U: Other fresh vegetables). The article?s conclusions remain the same. (December 2017)

Suggested Citation

  • Marlene Amstad & Simon M. Potter & Robert W. Rich, 2017. "The New York Fed Staff Underlying Inflation Gauge (UIG)," Economic Policy Review, Federal Reserve Bank of New York, issue 23-2, pages 1-32.
  • Handle: RePEc:fip:fednep:00042
    as

    Download full text from publisher

    File URL: https://www.newyorkfed.org/research/epr/2017/epr_2017_underlying_inflation_rich
    File Function: Summary
    Download Restriction: no

    File URL: https://www.newyorkfed.org/medialibrary/media/research/epr/2017/epr_2017_underlying_inflation_rich.pdf?la=en
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristadoro, Riccardo & Forni, Mario & Reichlin, Lucrezia & Veronese, Giovanni, 2005. "A Core Inflation Indicator for the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 539-560, June.
    2. Michael F. Bryan & Stephen G. Cecchetti & Rodney L. Wiggins, 1997. "Efficient inflation estimation," Working Papers (Old Series) 9707, Federal Reserve Bank of Cleveland.
    3. Gordon, Robert J, 1982. "Price Inertia and Policy Ineffectiveness in the United States, 1890-1980," Journal of Political Economy, University of Chicago Press, vol. 90(6), pages 1087-1117, December.
    4. Brent Meyer & Guhan Venkatu & Saeed Zaman, 2013. "Forecasting inflation? Target the middle," Economic Commentary, Federal Reserve Bank of Cleveland, issue Apr.
    5. Quah, Danny & Vahey, Shaun P, 1995. "Measuring Core Inflation?," Economic Journal, Royal Economic Society, vol. 105(432), pages 1130-1144, September.
    6. Seamus Hogan & Marianne Johnson & Thérèse Laflèche, 2001. "Core Inflation," Technical Reports 89, Bank of Canada.
    7. Marlene Amstad & Andreas M. Fischer, 2009. "Are Weekly Inflation Forecasts Informative?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(2), pages 237-252, April.
    8. Marlene Amstad & Ye Huan & Guonan Ma, 2014. "Developing an underlying inflation gauge for China," BIS Working Papers 465, Bank for International Settlements.
    9. Theodore M. Crone & N. Neil K. Khettry & Loretta J. Mester & Jason A. Novak, 2013. "Core Measures of Inflation as Predictors of Total Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(2‐3), pages 505-519, March.
    10. Robert J. Gordon, 1975. "Alternative Responses of Policy to External Supply Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 6(1), pages 183-206.
    11. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    12. Jeremy Rudd & Karl Whelan, 2007. "Modeling Inflation Dynamics: A Critical Review of Recent Research," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 155-170, February.
    13. Altissimo, Filippo & Mojon, Benoit & Zaffaroni, Paolo, 2009. "Can aggregation explain the persistence of inflation?," Journal of Monetary Economics, Elsevier, vol. 56(2), pages 231-241, March.
    14. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
    15. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    16. Mark A. Wynne, 2008. "Core inflation: a review of some conceptual issues," Review, Federal Reserve Bank of St. Louis, vol. 90(May), pages 205-228.
    17. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    18. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    19. Marlene Amstad & Andreas M. Fischer, 2009. "Do macroeconomic announcements move inflation forecasts?," Review, Federal Reserve Bank of St. Louis, vol. 91(Sep), pages 507-518.
    20. The People's Bank of China, 2016. "An underlying inflation gauge (UIG) for China," BIS Papers chapters, in: Bank for International Settlements (ed.), Inflation mechanisms, expectations and monetary policy, volume 89, pages 117-121, Bank for International Settlements.
    21. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    22. Cogley, Timothy, 2002. "A Simple Adaptive Measure of Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(1), pages 94-113, February.
    23. Amstad, Marlene & Fischer, Andreas M., 2010. "Monthly pass-through ratios," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1202-1213, July.
    24. Nelson, Charles R & Schwert, G William, 1977. "Short-Term Interest Rates as Predictors of Inflation: On Testing the Hypothesis That the Real Rate of Interest is Constant," American Economic Review, American Economic Association, vol. 67(3), pages 478-486, June.
    25. Domenico Giannone & Troy D. Matheson, 2007. "A New Core Inflation Indicator for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 145-180, December.
    26. William T. Gavin & Kevin L. Kliesen, 2008. "Forecasting inflation and output: comparing data-rich models with simple rules," Review, Federal Reserve Bank of St. Louis, vol. 90(May), pages 175-192.
    27. Michael F. Bryan & Stephen G. Cecchetti, 1994. "Measuring Core Inflation," NBER Chapters, in: Monetary Policy, pages 195-219, National Bureau of Economic Research, Inc.
    28. Robert W. Rich & Charles Steindel, 2007. "A comparison of measures of core inflation," Economic Policy Review, Federal Reserve Bank of New York, vol. 13(Dec), pages 19-38.
    29. Ricardo Reis & Mark W. Watson, 2010. "Relative Goods' Prices, Pure Inflation, and the Phillips Correlation," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(3), pages 128-157, July.
    30. repec:mcb:jmoncb:v:45:y:2013:i::p:505-519 is not listed on IDEAS
    31. Marlene Amstad & Simon M. Potter, 2009. "Real time underlying inflation gauges for monetary policymakers," Staff Reports 420, Federal Reserve Bank of New York.
    32. Stephen G Cecchetti & Richhild Moessner, 2008. "Commodity prices and inflation dynamics," BIS Quarterly Review, Bank for International Settlements, December.
    33. Jim Dolmas, 2005. "Trimmed mean PCE inflation," Working Papers 0506, Federal Reserve Bank of Dallas.
    34. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Deryugina & Alexey Ponomarenko & Andrey Sinyakov & Constantine Sorokin, 2018. "Evaluating underlying inflation measures for Russia," Macroeconomics and Finance in Emerging Market Economies, Taylor & Francis Journals, vol. 11(2), pages 124-145, May.
    2. Oguz Atuk & Mustafa Utku Ozmen, 2009. "Design and Evaluation of Core Inflation Measures for Turkey," Working Papers 0903, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    3. Matteo Luciani, 2020. "Common and Idiosyncratic Inflation," FEDS Notes 2020-03-05, Board of Governors of the Federal Reserve System (U.S.).
    4. Matteo Barigozzi & Marc Hallin & Matteo Luciani & Paolo Zaffaroni, 2021. "Inferential Theory for Generalized Dynamic Factor Models," Working Papers ECARES 2021-20, ULB -- Universite Libre de Bruxelles.
    5. Marlene Amstad & Simon M. Potter & Robert W. Rich, 2014. "The FRBNY staff underlying inflation gauge: UIG," Staff Reports 672, Federal Reserve Bank of New York.
    6. Lhuillier, Jean-Paul & Schoenle, Raphael, 2019. "Raising the Inflation Target: How Much Extra Room Does It Really Give?," CEPR Discussion Papers 14142, C.E.P.R. Discussion Papers.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marlene Amstad & Simon M. Potter & Robert W. Rich, 2014. "The FRBNY staff underlying inflation gauge: UIG," Staff Reports 672, Federal Reserve Bank of New York.
    2. Marlene Amstad & Simon M. Potter, 2009. "Real time underlying inflation gauges for monetary policymakers," Staff Reports 420, Federal Reserve Bank of New York.
    3. Marlene Amstad & Ye Huan & Guonan Ma, 2014. "Developing an underlying inflation gauge for China," BIS Working Papers 465, Bank for International Settlements.
    4. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    5. Jinill Kim & Byung Kwun Ahn, 2012. "A New Measure for Core Inflation Based on Generalized Dynamic-Factor Model," Economic Analysis (Quarterly), Economic Research Institute, Bank of Korea, vol. 18(2), pages 1-28, June.
    6. Domenico Giannone & Troy D. Matheson, 2007. "A New Core Inflation Indicator for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 145-180, December.
    7. Alan K. Detmeister, 2011. "The usefulness of core PCE inflation measures," Finance and Economics Discussion Series 2011-56, Board of Governors of the Federal Reserve System (U.S.).
    8. Brent Meyer & Saeed Zaman, 2019. "The usefulness of the median CPI in Bayesian VARs used for macroeconomic forecasting and policy," Empirical Economics, Springer, vol. 57(2), pages 603-630, August.
    9. Bermingham, Colin, 2010. "A critical assessment of existing estimates of US core inflation," Journal of Macroeconomics, Elsevier, vol. 32(4), pages 993-1007, December.
    10. Robert W. Rich & Charles Steindel, 2007. "A comparison of measures of core inflation," Economic Policy Review, Federal Reserve Bank of New York, vol. 13(Dec), pages 19-38.
    11. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    12. Amy Higgins & Randal Verbrugge, 2015. "Tracking Trend Inflation: Nonseasonally Adjusted Variants of the Median and Trimmed-Mean CPI," Working Papers (Old Series) 1527, Federal Reserve Bank of Cleveland.
    13. Oguz Atuk & Mustafa Utku Ozmen, 2009. "Design and Evaluation of Core Inflation Measures for Turkey," Working Papers 0903, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    14. Brent Meyer & Guhan Venkatu, 2012. "Trimmed-mean inflation statistics: just hit the one in the middle," Working Papers (Old Series) 1217, Federal Reserve Bank of Cleveland.
    15. Jamie Armour, 2006. "An Evaluation of Core Inflation Measures," Staff Working Papers 06-10, Bank of Canada.
    16. Dowd, Kevin & Cotter, John & Loh, Lixia, 2011. "U.S. Core Inflation: A Wavelet Analysis," Macroeconomic Dynamics, Cambridge University Press, vol. 15(4), pages 513-536, September.
    17. Riccardo Cristadoro & Giuseppe Saporito & Fabrizio Venditti, 2013. "Forecasting inflation and tracking monetary policy in the euro area: does national information help?," Empirical Economics, Springer, vol. 44(3), pages 1065-1086, June.
    18. Robert W. Rich & Charles Steindel, 2005. "A review of core inflation and an evaluation of its measures," Staff Reports 236, Federal Reserve Bank of New York.
    19. Bjarni G. Einarsson, 2014. "A Dynamic Factor Model for Icelandic Core Inflation," Economics wp67, Department of Economics, Central bank of Iceland.
    20. Pincheira-Brown, Pablo & Selaive, Jorge & Nolazco, Jose Luis, 2019. "Forecasting inflation in Latin America with core measures," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1060-1071.

    More about this item

    Keywords

    inflation; core inflation; monetary policy; dynamic factor models; forecasting;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fednep:00042. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/frbnyus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/frbnyus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.