IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/4627.html
   My bibliography  Save this paper

Sequential Information Flow and Real-Time Diagnosis of Swiss Inflation: Intra-Monthly DCF Estimates for a Low-Inflation Environ

Author

Listed:
  • Fischer, Andreas
  • Amstad, Marlene

Abstract

The timely release of macroeconomic data imposes a distinct structure on the panel: the clustering and sequential ordering of real and nominal variables. We call this orderly release of economic data sequential information flow. The ordered panel generates a new class of restrictions that are helpful in interpreting the real-time estimates of monthly core inflation through the identification of turning points and structural shocks. After establishing the sought-after properties (of smoothness, stability, and forecasting) for core inflation, we turn to the discussion of real-time diagnosis for a low inflation environment. This is done in the context of weekly estimates of Swiss inflation. The intra-monthly estimates for core inflation find that it is worthwhile to update this measure at least twice a month.

Suggested Citation

  • Fischer, Andreas & Amstad, Marlene, 2004. "Sequential Information Flow and Real-Time Diagnosis of Swiss Inflation: Intra-Monthly DCF Estimates for a Low-Inflation Environ," CEPR Discussion Papers 4627, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:4627
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP4627
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amstad, Marlene & Fischer, Andreas M., 2010. "Monthly pass-through ratios," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1202-1213, July.
    2. Michael P. Clements & David F. Hendry, 2005. "Guest Editors’ Introduction: Information in Economic Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 713-753, December.
    3. Marlene Amstad & Andreas Fischer, 2005. "Shock Identification of Macroeconomic Forecasts based on Daily Panels," Working Papers 05.02, Swiss National Bank, Study Center Gerzensee.
    4. Domenico Giannone & Troy D. Matheson, 2007. "A New Core Inflation Indicator for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 145-180, December.
    5. Marlene Amstad & Andreas M. Fischer, 2005. "Time-varying pass-through from import prices to consumer prices: evidence from an event study with real-time data," Staff Reports 228, Federal Reserve Bank of New York.
    6. Stan Plessis & Gideon Rand & Kevin Kotzé, 2015. "Measuring Core Inflation in South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 83(4), pages 527-548, December.
    7. Marlene Amstad & Simon M. Potter & Robert W. Rich, 2014. "The FRBNY staff underlying inflation gauge: UIG," Staff Reports 672, Federal Reserve Bank of New York.
    8. Marlene Amstad & Andreas M. Fischer, 2009. "Are Weekly Inflation Forecasts Informative?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(2), pages 237-252, April.

    More about this item

    Keywords

    Common factors; inflation; Sequential information flow;
    All these keywords.

    JEL classification:

    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:4627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.