IDEAS home Printed from https://ideas.repec.org/p/onb/oenbwp/89.html
   My bibliography  Save this paper

Forecasting Austrian GDP using the generalized dynamic factor model

Author

Abstract

In this paper, a generalized dynamic factor model is utilized to produce short-term forecasts of real Austrian GDP. The model follows the frequency domain approach proposed by Forni, Hallin, Lippi and Reichlin (2000, 2003). The forecasting performance of the model with a large data set of 143 variables has been assessed relative to simple univariate time-series forecasts. The results show that the factor model can barely outperform the much simpler benchmark model, given the usuall levels of significance. Thus we followed a line of research proposed by Boivin and Ng (2003) and Watson (2000), who suggested that the use of a small data set may increase the forecasting performance. The main finding from our extensive out-of-sample forecasting experiment that we have conducted is that the best forecasting performance can be achieved with small data sets with a handful of variables only. These models perform signifi- cantly better than the large model. This result seems to contradict the basic idea of dynamic factor models, which have been constructed to exploit the potentially useful information of a large data set.

Suggested Citation

  • Martin Schneider & Martin Spitzer, 2004. "Forecasting Austrian GDP using the generalized dynamic factor model," Working Papers 89, Oesterreichische Nationalbank (Austrian Central Bank).
  • Handle: RePEc:onb:oenbwp:89
    as

    Download full text from publisher

    File URL: https://www.oenb.at/dam/jcr:c8336503-a27e-441e-8c4d-36eb2bc0f91c/wp89_1__tcm16-20424.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    2. Altissimo, Filippo & Bassanetti, Antonio & Cristadoro, Riccardo & Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia & Veronese, Giovanni, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    3. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, "undated". "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    4. Gonzalo Camba-Mendez & George Kapetanios & Richard J. Smith & Martin R. Weale, 2001. "An automatic leading indicator of economic activity: forecasting GDP growth for European countries," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-37.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:onb:oenbwp:89. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Markus Knell and Helmut Stix). General contact details of provider: http://edirc.repec.org/data/oenbbat.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.