IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/63.html
   My bibliography  Save this paper

Filtering and Forecasting Spot Electricity Prices in the Increasingly Deregulated Australian Electricity Market

Author

Listed:
  • Max Stevenson

    (Discipline of Finance, University of Sydney)

Abstract

Modelling and forecasting the volatile spot pricing process for electricity presents a number of challenges. For increasingly deregulated electricity markets, like that in the Australian state of New South Wales, there is need to price a range of derivative securities used for hedging. Any derivative pricing model that hopes to capture the pricing dynamics within this market must be able to cope with the extreme volatility of the observed spot prices. By applying wavelet analysis, we examine both the price and demand series at different time locations and levels of resolution to reveal and differentiate what is signal and what is noise. Further, we cleanse the data of leakage from the high frequency, mean reverting price spikes into the more fundamental levels of frequency resolution. As it is from these levels that we base the reconstruction of our filtered series, we need to ensure they are least contaminated by noise. Using the filtered data, we explore time series models as possible candidates for explaining the pricing process and evaluate their forecasting ability. These models include one from the threshold autoregressive (AR) model. What we find is that models from the TAR class produce forecasts that best appear to capture the mean and variance components of the actual data.

Suggested Citation

  • Max Stevenson, 2001. "Filtering and Forecasting Spot Electricity Prices in the Increasingly Deregulated Australian Electricity Market," Research Paper Series 63, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:63
    as

    Download full text from publisher

    File URL: http://www.qfrc.uts.edu.au/research/research_papers/rp63.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ramsey James B. & Lampart Camille, 1998. "The Decomposition of Economic Relationships by Time Scale Using Wavelets: Expenditure and Income," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(1), pages 1-22, April.
    2. Shinn-Juh Lin & Max Stevenson, 1999. "Wavelet Analysis of Index Prices in Futures and Cash Markets: Implication for the Cost-Of-Carry Model," Research Paper Series 11, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Wiggins, James B, 1992. "Betas in Up and Down Markets," The Financial Review, Eastern Finance Association, vol. 27(1), pages 107-123, February.
    4. Domian, Dale L. & Louton, David A., 1995. "Business cycle asymmetry and the stock market," The Quarterly Review of Economics and Finance, Elsevier, vol. 35(4), pages 451-466.
    5. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    6. Bhardwaj, Ravinder K & Brooks, LeRoy D, 1993. "Dual Betas from Bull and Bear Markets: Reversal of the Size Effect," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 16(4), pages 269-283, Winter.
    7. Domian, Dale L. & Louton, David A., 1997. "A threshold autoregressive analysis of stock returns and real economic activity," International Review of Economics & Finance, Elsevier, vol. 6(2), pages 167-179.
    8. L. C. G. Rogers & S. E. Satchell, 2000. "Does the behaviour of the asset tell us anything about the option price formula? A cautionary tale," Applied Financial Economics, Taylor & Francis Journals, vol. 10(1), pages 37-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    2. Arciniegas, Alvaro I. & Arciniegas Rueda, Ismael E., 2008. "Forecasting short-term power prices in the Ontario Electricity Market (OEM) with a fuzzy logic based inference system," Utilities Policy, Elsevier, vol. 16(1), pages 39-48, March.
    3. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    4. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    5. Jesus Lago & Fjo De Ridder & Peter Vrancx & Bart De Schutter, 2017. "Forecasting day-ahead electricity prices in Europe: the importance of considering market integration," Papers 1708.07061, arXiv.org, revised Dec 2017.
    6. repec:ntu:ntugeo:vol2-iss1-14-042 is not listed on IDEAS
    7. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    8. Rafal Weron, 2005. "Market price of risk implied by Asian-style electricity options," Econometrics 0502003, EconWPA.
    9. Dowd, Kevin & Cotter, John & Loh, Lixia, 2011. "U.S. Core Inflation: A Wavelet Analysis," Macroeconomic Dynamics, Cambridge University Press, vol. 15(04), pages 513-536, September.
    10. Miller, J. Isaac & Park, Joon Y., 2010. "Nonlinearity, nonstationarity, and thick tails: How they interact to generate persistence in memory," Journal of Econometrics, Elsevier, vol. 155(1), pages 83-89, March.
    11. M. Pilar Muñoz & Cristina Corchero & F.-Javier Heredia, 2013. "Improving Electricity Market Price Forecasting with Factor Models for the Optimal Generation Bid," International Statistical Review, International Statistical Institute, vol. 81(2), pages 289-306, August.
    12. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    13. Rafal Weron & Adam Misiorek, 2006. "Short-term electricity price forecasting with time series models: A review and evaluation," HSC Research Reports HSC/06/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    14. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "Modeling and forecasting of the long-term seasonal component of the EEX and Nord Pool spot prices," HSC Research Reports HSC/13/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    15. Stuart Thomas & Vikash Ramiah & Heather Mitchell & Richard Heaney, 2011. "Seasonal factors and outlier effects in rate of return on electricity spot prices in Australia's National Electricity Market," Applied Economics, Taylor & Francis Journals, vol. 43(3), pages 355-369.
    16. Trueck, Stefan & Weron, Rafal & Wolff, Rodney, 2007. "Outlier Treatment and Robust Approaches for Modeling Electricity Spot Prices," MPRA Paper 4711, University Library of Munich, Germany.
    17. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    18. Karakatsani Nektaria V & Bunn Derek W., 2010. "Fundamental and Behavioural Drivers of Electricity Price Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-42, September.
    19. Adrian Cantemir Calin & Tiberiu Diaconescu & Oana – Cristina Popovici, 2014. "Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 2(1), pages 42-47, June.
    20. Stevenson Maxwell J & Moreira do Amaral Luiz Felipe & Peat Maurice, 2006. "Risk Management and the Role of Spot Price Predictions in the Australian Retail Electricity Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-25, September.

    More about this item

    Keywords

    electricity; wavelets; time series models; forecasting;

    Lists

    This item is featured on the following reading lists or Wikipedia pages:
    1. Talk:Intermittent energy source/Archive 1 in Wikipedia English ne '')

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:63. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/qfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.