IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v81y2013i2p289-306.html
   My bibliography  Save this article

Improving Electricity Market Price Forecasting with Factor Models for the Optimal Generation Bid

Author

Listed:
  • M. Pilar Muñoz
  • Cristina Corchero
  • F.-Javier Heredia

Abstract

No abstract is available for this item.

Suggested Citation

  • M. Pilar Muñoz & Cristina Corchero & F.-Javier Heredia, 2013. "Improving Electricity Market Price Forecasting with Factor Models for the Optimal Generation Bid," International Statistical Review, International Statistical Institute, vol. 81(2), pages 289-306, August.
  • Handle: RePEc:bla:istatr:v:81:y:2013:i:2:p:289-306
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/insr.12014
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilbert, Paul D. & Meijer, Erik, 2005. "Time Series Factor Analysis with an Application to Measuring Money," Research Report 05F10, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    3. Max Stevenson, 2001. "Filtering and Forecasting Spot Electricity Prices in the Increasingly Deregulated Australian Electricity Market," Research Paper Series 63, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    5. Jakob De Haan & Erik Leertouwer & Erik Meijer & Tom Wansbeek, 2003. "Measuring central bank independence: a latent variables approach," Scottish Journal of Political Economy, Scottish Economic Society, vol. 50(3), pages 326-340, August.
    6. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    7. Jiazhu Pan & Qiwei Yao, 2008. "Modelling multiple time series via common factors," Biometrika, Biometrika Trust, vol. 95(2), pages 365-379.
    8. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    9. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    10. Peter Molenaar, 1985. "A dynamic factor model for the analysis of multivariate time series," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 181-202, June.
    11. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    12. R. Cattell & A. Cattell & R. Rhymer, 1947. "P-technique demonstrated in determining psychophysiological source traits in a normal individual," Psychometrika, Springer;The Psychometric Society, vol. 12(4), pages 267-288, December.
    13. García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2008. "Seasonal dynamic factor analysis and bootstrap inference : application to electricity market forecasting," DES - Working Papers. Statistics and Econometrics. WS ws081406, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    15. Spanos, Aris, 1984. "Liquidity as a Latent Variable-An Application of the MIMIC Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 46(2), pages 125-143, May.
    16. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    17. Pena, Daniel & Poncela, Pilar, 2004. "Forecasting with nonstationary dynamic factor models," Journal of Econometrics, Elsevier, vol. 119(2), pages 291-321, April.
    18. Michael McAleer & Felix Chan & Les Oxley, 2013. "Modeling and Simulation: An Overview," Working Papers in Economics 13/18, University of Canterbury, Department of Economics and Finance.
    19. Tommaso Proietti, 2011. "Estimation of Common Factors under Cross‐Sectional and Temporal Aggregation Constraints," International Statistical Review, International Statistical Institute, vol. 79(3), pages 455-476, December.
    20. repec:dgr:rugsom:05f10 is not listed on IDEAS
    21. Jungbacker, B. & Koopman, S.J. & van der Wel, M., 2011. "Maximum likelihood estimation for dynamic factor models with missing data," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1358-1368, August.
    22. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    23. Pan, Jiazhu & Yao, Qiwei, 2008. "Modelling multiple time series via common factors," LSE Research Online Documents on Economics 22876, London School of Economics and Political Science, LSE Library.
    24. Eduardo Mendes & Les Oxley & Marco Reale, 2008. "Some New Approaches to Forecasting the Price of Electricity: A Study of Californian Market," Working Papers in Economics 08/05, University of Canterbury, Department of Economics and Finance.
    25. Stein W. Wallace & Stein-Erik Fleten, 2002. "Stochastic programming in energy," GE, Growth, Math methods 0201001, University Library of Munich, Germany, revised 13 Nov 2003.
    26. Muñoz, M. Pilar & Dickey, David A., 2009. "Are electricity prices affected by the US dollar to Euro exchange rate? The Spanish case," Energy Economics, Elsevier, vol. 31(6), pages 857-866, November.
    27. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    28. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    29. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    30. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    31. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
    32. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos S. Thomaidis & Gordon H. Dash & Nina Kajiji, 2019. "Common Unobserved Determinants of Intraday Electricity Prices," The Energy Journal, , vol. 40(1_suppl), pages 211-232, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    2. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    3. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    4. Kaufmann, Daniel & Scheufele, Rolf, 2017. "Business tendency surveys and macroeconomic fluctuations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
    5. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    6. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    7. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    8. Monica Defend & Aleksey Min & Lorenzo Portelli & Franz Ramsauer & Francesco Sandrini & Rudi Zagst, 2021. "Quantifying Drivers of Forecasted Returns Using Approximate Dynamic Factor Models for Mixed-Frequency Panel Data," Forecasting, MDPI, vol. 3(1), pages 1-35, February.
    9. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    10. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    11. Poncela, Pilar, 2021. "Dynamic factor models: does the specification matter?," DES - Working Papers. Statistics and Econometrics. WS 32210, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
    13. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    14. Francisco Corona & Pedro Orraca, 2019. "Remittances in Mexico and their unobserved components," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 28(8), pages 1047-1066, November.
    15. Daniel Armeanu & Jean Vasile Andrei & Leonard Lache & Mirela Panait, 2017. "A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    16. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    17. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    18. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    19. Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018. "Dynamic factor model with infinite‐dimensional factor space: Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
    20. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:81:y:2013:i:2:p:289-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.