IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws081406.html
   My bibliography  Save this paper

Seasonal dynamic factor analysis and bootstrap inference : application to electricity market forecasting

Author

Listed:
  • Alonso, Andrés M.
  • García-Martos, Carolina
  • Rodríguez, Julio
  • Sánchez, María Jesús

Abstract

Year-ahead forecasting of electricity prices is an important issue in the current context of electricity markets. Nevertheless, only one-day-ahead forecasting is commonly tackled up in previous published works. Moreover, methodology developed for the short-term does not work properly for long-term forecasting. In this paper we provide a seasonal extension of the Non-Stationary Dynamic Factor Analysis, to deal with the interesting problem (both from the economic and engineering point of view) of long term forecasting of electricity prices. Seasonal Dynamic Factor Analysis (SeaDFA) allows to deal with dimensionality reduction in vectors of time series, in such a way that extracts common and specific components. Furthermore, common factors are able to capture not only regular dynamics (stationary or not) but also seasonal one, by means of common factors following a multiplicative seasonal VARIMA(p,d,q)×(P,D,Q)s model. Besides, a bootstrap procedure is proposed to be able to make inference on all the parameters involved in the model. A bootstrap scheme developed for forecasting includes uncertainty due to parameter estimation, allowing to enhance the coverage of forecast confidence intervals. Concerning the innovative and challenging application provided, bootstrap procedure developed allows to calculate not only point forecasts but also forecasting intervals for electricity prices.

Suggested Citation

  • Alonso, Andrés M. & García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2008. "Seasonal dynamic factor analysis and bootstrap inference : application to electricity market forecasting," DES - Working Papers. Statistics and Econometrics. WS ws081406, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws081406
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/2358/ws081406.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    2. Wu, Lilian Shiao-Yen & Pai, Jeffrey S. & Hosking, J.R.M., 1996. "An algorithm for estimating parameters of state-space models," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 99-106, June.
    3. Crespo Cuaresma, Jesús & Hlouskova, Jaroslava & Kossmeier, Stephan & Obersteiner, Michael, 2004. "Forecasting electricity spot-prices using linear univariate time-series models," Applied Energy, Elsevier, vol. 77(1), pages 87-106, January.
    4. Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
    5. Ortega, Jose Antonio & Poncela, Pilar, 2005. "Joint forecasts of Southern European fertility rates with non-stationary dynamic factor models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 539-550.
    6. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    7. Pena, Daniel & Poncela, Pilar, 2004. "Forecasting with nonstationary dynamic factor models," Journal of Econometrics, Elsevier, vol. 119(2), pages 291-321, April.
    8. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    9. Cottet R. & Smith M., 2003. "Bayesian Modeling and Forecasting of Intraday Electricity Load," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 839-849, January.
    10. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    11. Ansley, Craig F. & Newbold, Paul, 1980. "Finite sample properties of estimators for autoregressive moving average models," Journal of Econometrics, Elsevier, vol. 13(2), pages 159-183, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Dynamic factor analysis;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws081406. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.