IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Forecasting with nonstationary dynamic factor models

  • Pena, Daniel
  • Poncela, Pilar

In this paper we analyze the structure and the forecasting performance of the dynamic factor model. It is shown that the forecasts obtained by the factor model imply shrinkage pooling terms, similar to the ones obtained from hierarchical Bayesian models that have been applied successfully in the econometric literature. Thus, the results obtained in this paper provide an additional justification for these and other types of pooling procedures. The expected decrease in MSE f or using a factor model versus univariate ARIMA models, shrinkage univariate models or vector ARMA models are studied f or the one factor model. It is proved that some substantial gains can be obtained in some cases with respect to the univariate forecasting. Monte Carlo simulations are presented to illustrate this result. A factor model is built to forecast GNP of European countries and it is shown that the factor model provides better forecasts than both univariate and shrinkage univariate forecasts.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(03)00198-2
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 119 (2004)
Issue (Month): 2 (April)
Pages: 291-321

as
in new window

Handle: RePEc:eee:econom:v:119:y:2004:i:2:p:291-321
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Vahid, Farshid & Engle, Robert F., 1997. "Codependent cycles," Journal of Econometrics, Elsevier, vol. 80(2), pages 199-221, October.
  2. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 393-95, October.
  3. Garcia-Ferrer, Antonio & Poncela, Pilar, 2002. "Forecasting European GNP Data through Common Factor Models and Other Procedures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(4), pages 225-44, July.
  4. Diebold & Rudebusch, . "Measuring Business Cycle: A Modern Perspective," Home Pages _061, University of Pennsylvania.
  5. Min, C.K. & Zellner, A., 1992. ""Bayesian and Non-Bayesian Methods for Combining Models and Forecasts with Applications to Forecasting International Growth Rates"," Papers 90-92-23, California Irvine - School of Social Sciences.
  6. Robert F. Engle & Sharon Kozicki, 1990. "Testing For Common Features," NBER Technical Working Papers 0091, National Bureau of Economic Research, Inc.
  7. Mittnik, Stefan, 1990. "Macroeconomic Forecasting Using Pooled International Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 205-08, April.
  8. Zellner, A. & Hong, C., 1988. "Forecasting International Growth Rates Using Bayesian Shrinkage And Other Procedures," Papers m8802, Southern California - Department of Economics.
  9. Gonzalo, Jesus & Granger, Clive W J, 1995. "Estimation of Common Long-Memory Components in Cointegrated Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 27-35, January.
  10. Garcia-Ferrer, Antonio, et al, 1987. "Macroeconomic Forecasting Using Pooled International Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(1), pages 53-67, January.
  11. Francis X. Diebold & Peter F. Christoffersen, 1997. "Cointegration and Long-Horizon Forecasting," IMF Working Papers 97/61, International Monetary Fund.
  12. Clements, Michael P & Hendry, David F, 1995. "Forecasting in Cointegration Systems," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 127-46, April-Jun.
  13. Lin, Jin-Lung & Tsay, Ruey S, 1996. "Co-integration Constraint and Forecasting: An Empirical Examination," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 519-38, Sept.-Oct.
  14. Li, David T & Dorfman, Jeffrey H, 1996. "Predicting Turning Points through the Integration of Multiple Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 421-28, October.
  15. Zellner, Arnold & Hong, Chansik & Min, Chung-ki, 1991. "Forecasting turning points in international output growth rates using Bayesian exponentially weighted autoregression, time-varying parameter, and pooling techniques," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 275-304.
  16. Zellner, Arnold & Min, Chung-ki, 1998. "Forecasting turning points in countries' output growth rates: A response to Milton Friedman," Journal of Econometrics, Elsevier, vol. 88(2), pages 203-206, November.
  17. Engle, Robert F. & Yoo, Byung Sam, 1987. "Forecasting and testing in co-integrated systems," Journal of Econometrics, Elsevier, vol. 35(1), pages 143-159, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:119:y:2004:i:2:p:291-321. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.