IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws122317.html
   My bibliography  Save this paper

More is not always better : back to the Kalman filter in dynamic factor models

Author

Listed:
  • Poncela, Pilar
  • Ruiz, Esther

Abstract

In the context of dynamic factor models (DFM), it is known that, if the cross-sectional and time dimensions tend to infinity, the Kalman filter yields consistent smoothed estimates of the underlying factors. When looking at asymptotic properties, the cross- sectional dimension needs to increase for the filter or stochastic error uncertainty to decrease while the time dimension needs to increase for the parameter uncertainty to decrease. ln this paper, assuming that the model specification is known, we separate the finite sample contribution of each of both uncertainties to the total uncertainty associated with the estimation of the underlying factors. Assuming that the parameters are known, we show that, as far as the serial dependence of the idiosyncratic noises is not very persistent and regardless of whether their contemporaneous correlations are weak or strong, the filter un-certainty is a non-increasing function of the cross-sectional dimension. Furthermore, in situations of empirical interest, if the cross-sectional dimension is beyond a relatively small number, the filter uncertainty only decreases marginally. Assuming weak contemporaneous correlations among the serially uncorrelated idiosyncratic noises, we prove the consistency not only of smooth but also of real time filtered estimates of the underlying factors in a simple case, extending the results to non-stationary DFM. In practice, the model parameters are un-known and have to be estimated, adding further uncertainty to the estimated factors. We use simulations to measure this uncertainty in finite samples and show that, for the sample sizes usually encountered in practice when DFM are fitted to macroeconomic variables, the contribution of the parameter uncertainty can represent a large percentage of the total uncertainty involved in factor extraction. All results are illustrated estimating common factors of simulated time series

Suggested Citation

  • Poncela, Pilar & Ruiz, Esther, 2012. "More is not always better : back to the Kalman filter in dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS ws122317, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws122317
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/15782/ws122317.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    3. Breitung, Jörg & Tenhofen, Jörn, 2011. "GLS Estimation of Dynamic Factor Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1150-1166.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Diebold, Francis X & Nerlove, Marc, 1989. "The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor Arch Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(1), pages 1-21, Jan.-Mar..
    6. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
    7. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    8. Giovanni Caggiano & George Kapetanios & Vincent Labhard, 2011. "Are more data always better for factor analysis? Results for the euro area, the six largest euro area countries and the UK," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 736-752, December.
    9. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    10. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    11. Sandra Eickmeier, 2009. "Comovements and heterogeneity in the euro area analyzed in a non-stationary dynamic factor model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 933-959.
    12. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    13. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    14. Chmelarova, Viera & Nath, Hiranya K., 2010. "Relative price convergence among US cities: Does the choice of numeraire city matter?," Journal of Macroeconomics, Elsevier, vol. 32(1), pages 405-414, March.
    15. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    16. Benoit Perron & Hyungsik Roger Moon, 2007. "An empirical analysis of nonstationarity in a panel of interest rates with factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 383-400.
    17. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    18. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    19. Jungbacker, B. & Koopman, S.J. & van der Wel, M., 2011. "Maximum likelihood estimation for dynamic factor models with missing data," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1358-1368, August.
    20. Camacho, Maximo & Pérez-Quirós, Gabriel & Poncela, Pilar, 2012. "Markov-switching dynamic factor models in real time," CEPR Discussion Papers 8866, C.E.P.R. Discussion Papers.
    21. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    22. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    23. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
    24. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    25. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    26. Pena, Daniel & Poncela, Pilar, 2004. "Forecasting with nonstationary dynamic factor models," Journal of Econometrics, Elsevier, vol. 119(2), pages 291-321, April.
    27. Harvey, Andrew & Streibel, Mariane, 1998. "Testing for a slowly changing level with special reference to stochastic volatility," Journal of Econometrics, Elsevier, vol. 87(1), pages 167-189, August.
    28. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    29. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    30. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP
      [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]
      ," MPRA Paper 63713, University Library of Munich, Germany.
    2. repec:col:000152:015779 is not listed on IDEAS

    More about this item

    Keywords

    Cross-sectional dimension;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws122317. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.