IDEAS home Printed from https://ideas.repec.org/f/pto282.html
   My authors  Follow this author

Jakub Tomczyk

Personal Details

First Name:Jakub
Middle Name:
Last Name:Tomczyk
Suffix:
RePEc Short-ID:pto282

Affiliation

(50%) Hugo Steinhaus Center for Stochastic Methods
Politechnika Wrocławska

Wrocław, Poland
http://www.im.pwr.wroc.pl/~hugo/

: +48-71-3203530
+48-71-3202654
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw
RePEc:edi:hspwrpl (more details at EDIRC)

(50%) Wydział Informatyki i Zarządzania
Politechnika Wrocławska

Wrocław, Poland
http://wiz.pwr.wroc.pl/

:


RePEc:edi:iopwrpl (more details at EDIRC)

Research output

as
Jump to: Working papers Software

Working papers

  1. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "Modeling and forecasting of the long-term seasonal component of the EEX and Nord Pool spot prices," HSC Research Reports HSC/13/02, Hugo Steinhaus Center, Wroclaw University of Technology.
  2. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2012. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," HSC Research Reports HSC/12/06, Hugo Steinhaus Center, Wroclaw University of Technology.

Software components

  1. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "LTSCWAVE: MATLAB function to estimate and forecast the long-term seasonal component (LTSC) of an electricity spot price series using wavelet-based methods," HSC Software M13003, Hugo Steinhaus Center, Wroclaw University of Technology.
  2. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "LTSCSIMPLE: MATLAB function to estimate and forecast the long-term seasonal component (LTSC) of an electricity spot price series using simple methods," HSC Software M13001, Hugo Steinhaus Center, Wroclaw University of Technology.
  3. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "LTSCSIN: MATLAB function to estimate and forecast the long-term seasonal component (LTSC) of an electricity spot price series using sine-based methods," HSC Software M13002, Hugo Steinhaus Center, Wroclaw University of Technology.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "Modeling and forecasting of the long-term seasonal component of the EEX and Nord Pool spot prices," HSC Research Reports HSC/13/02, Hugo Steinhaus Center, Wroclaw University of Technology.

    Cited by:

    1. Jakub Nowotarski, 2013. "Short-term forecasting of electricity spot prices using model averaging (Krótkoterminowe prognozowanie spotowych cen energii elektrycznej z wykorzystaniem uśredniania modeli)," HSC Research Reports HSC/13/17, Hugo Steinhaus Center, Wroclaw University of Technology.
    2. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    3. Janczura, Joanna & Trueck, Stefan & Weron, Rafal & Wolff, Rodney, 2012. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," MPRA Paper 39277, University Library of Munich, Germany.

  2. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2012. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," HSC Research Reports HSC/12/06, Hugo Steinhaus Center, Wroclaw University of Technology.

    Cited by:

    1. Afanasyev, Dmitriy & Fedorova, Elena, 2015. "The long-term trends on Russian electricity market: comparison of empirical mode and wavelet decompositions," MPRA Paper 62391, University Library of Munich, Germany.
    2. Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014. "An empirical comparison of alternative schemes for combining electricity spot price forecasts," Energy Economics, Elsevier, vol. 46(C), pages 395-412.
    3. Weron, Rafał & Zator, Michał, 2015. "A note on using the Hodrick–Prescott filter in electricity markets," Energy Economics, Elsevier, vol. 48(C), pages 1-6.
    4. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    5. Katarzyna Maciejowska & Rafal Weron, 2013. "Forecasting of daily electricity prices with factor models: Utilizing intra-day and inter-zone relationships," HSC Research Reports HSC/13/11, Hugo Steinhaus Center, Wroclaw University of Technology.
    6. Fanelli, Viviana & Maddalena, Lucia & Musti, Silvana, 2016. "Modelling electricity futures prices using seasonal path-dependent volatility," Applied Energy, Elsevier, vol. 173(C), pages 92-102.
    7. I A Eckley & G P Nason, 2018. "A test for the absence of aliasing or local white noise in locally stationary wavelet time series," Biometrika, Biometrika Trust, vol. 105(4), pages 833-848.
    8. Bannör, Karl & Kiesel, Rüdiger & Nazarova, Anna & Scherer, Matthias, 2016. "Parametric model risk and power plant valuation," Energy Economics, Elsevier, vol. 59(C), pages 423-434.
    9. Jakub Nowotarski, 2013. "Short-term forecasting of electricity spot prices using model averaging (Krótkoterminowe prognozowanie spotowych cen energii elektrycznej z wykorzystaniem uśredniania modeli)," HSC Research Reports HSC/13/17, Hugo Steinhaus Center, Wroclaw University of Technology.
    10. Frömmel, Michael & Han, Xing & Kratochvil, Stepan, 2014. "Modeling the daily electricity price volatility with realized measures," Energy Economics, Elsevier, vol. 44(C), pages 492-502.
    11. Marie Bessec & Julien Fouquau & Sophie Méritet, 2014. "Forecasting electricity spot prices using time-series models with a double temporal segmentation," Post-Print hal-01502835, HAL.
    12. Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
    13. Jakub Nowotarski & Rafal Weron, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," HSC Research Reports HSC/16/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    14. Luigi Grossi & Fany Nan, 2017. "Forecasting electricity prices through robust nonlinear models," Working Papers 06/2017, University of Verona, Department of Economics.
    15. Pawel Maryniak & Rafal Weron, 2014. "Forecasting the occurrence of electricity price spikes in the UK power market," HSC Research Reports HSC/14/11, Hugo Steinhaus Center, Wroclaw University of Technology.
    16. Grzegorz Marcjasz & Bartosz Uniejewski & Rafal Weron, 2017. "Importance of the long-term seasonal component in day-ahead electricity price forecasting revisited: Neural network models," HSC Research Reports HSC/17/03, Hugo Steinhaus Center, Wroclaw University of Technology.
    17. Patrick Hénaff & Ismail Laachir & Francesco Russo, 2018. "Gas Storage Valuation and Hedging: A Quantification of Model Risk," International Journal of Financial Studies, MDPI, Open Access Journal, vol. 6(1), pages 1-27, March.
    18. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "Modeling and forecasting of the long-term seasonal component of the EEX and Nord Pool spot prices," HSC Research Reports HSC/13/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    19. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    20. Francisco Javier Duque-Pintor & Manuel Jesús Fernández-Gómez & Alicia Troncoso & Francisco Martínez-Álvarez, 2016. "A New Methodology Based on Imbalanced Classification for Predicting Outliers in Electricity Demand Time Series," Energies, MDPI, Open Access Journal, vol. 9(9), pages 1-10, September.
    21. Pawel Maryniak & Stefan Trueck & Rafal Weron, 2016. "Carbon pricing, forward risk premiums and pass-through rates in Australian electricity futures markets," HSC Research Reports HSC/16/10, Hugo Steinhaus Center, Wroclaw University of Technology.
    22. Tommaso Proietti & Niels Haldrup & Oskar Knapik, 2017. "Spikes and memory in (Nord Pool) electricity price spot prices," CREATES Research Papers 2017-39, Department of Economics and Business Economics, Aarhus University.
    23. Bartosz Uniejewski & Grzegorz Marcjasz & Rafal Weron, 2017. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting. Part II – Probabilistic forecasting," HSC Research Reports HSC/17/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    24. Ida Bakke & Stein-Erik Fleten & Lars Ivar Hagfors & Verena Hagspiel & Beate Norheim & Sonja Wogrin, 2016. "Investment in electric energy storage under uncertainty: a real options approach," Computational Management Science, Springer, vol. 13(3), pages 483-500, July.
    25. Joanna Janczura, 2014. "Pricing electricity derivatives within a Markov regime-switching model: a risk premium approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 1-30, February.
    26. Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Technology.
    27. Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
    28. Grzegorz Marcjasz & Bartosz Uniejewski & Rafal Weron, 2018. "Probabilistic electricity price forecasting with NARX networks: Combine point or probabilistic forecasts?," HSC Research Reports HSC/18/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    29. Caldana, Ruggero & Fusai, Gianluca & Roncoroni, Andrea, 2017. "Electricity forward curves with thin granularity: Theory and empirical evidence in the hourly EPEXspot market," European Journal of Operational Research, Elsevier, vol. 261(2), pages 715-734.
    30. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2016. "The long-term trends on the electricity markets: Comparison of empirical mode and wavelet decompositions," Energy Economics, Elsevier, vol. 56(C), pages 432-442.

Software components

    Sorry, no citations of software components recorded.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 3 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ENE: Energy Economics (3) 2012-11-17 2012-11-24 2013-03-02. Author is listed
  2. NEP-FOR: Forecasting (3) 2012-11-17 2012-11-24 2013-03-02. Author is listed
  3. NEP-ETS: Econometric Time Series (1) 2012-11-17. Author is listed

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Jakub Tomczyk should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.