IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

An improved wavelet–ARIMA approach for forecasting metal prices

  • Kriechbaumer, Thomas
  • Angus, Andrew
  • Parsons, David
  • Rivas Casado, Monica
Registered author(s):

    Metal price forecasts support estimates of future profits from metal exploration and mining and inform purchasing, selling and other day-to-day activities in the metals industry. Past research has shown that cyclical behaviour is a dominant characteristic of metal prices. Wavelet analysis enables to capture this cyclicality by decomposing a time series into its frequency and time domain. This study assesses the usefulness of an improved combined wavelet-autoregressive integrated moving average (ARIMA) approach for forecasting monthly prices of aluminium, copper, lead and zinc. The performance of ARIMA models in forecasting metal prices is demonstrated to be increased substantially through a wavelet-based multiresolution analysis (MRA) prior to ARIMA model fitting. The approach demonstrated in this paper is novel because it identifies the optimal combination of the wavelet transform type, wavelet function and the number of decomposition levels used in the MRA and thereby increases the forecast accuracy significantly. The results showed that, on average, the proposed framework has the potential to increase the accuracy of one month ahead forecasts by $53/t for aluminium, $126/t for copper, $50/t for lead and $51/t for zinc, relative to classic ARIMA models. This highlights the importance of taking into account cyclicality when forecasting metal prices.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S030142071300086X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Resources Policy.

    Volume (Year): 39 (2014)
    Issue (Month): C ()
    Pages: 32-41

    as
    in new window

    Handle: RePEc:eee:jrpoli:v:39:y:2014:i:c:p:32-41
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/30467

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
    2. Roberts, Mark C., 2009. "Duration and characteristics of metal price cycles," Resources Policy, Elsevier, vol. 34(3), pages 87-102, September.
    3. Cashin, Paul & McDermott, C. John & Scott, Alasdair, 2002. "Booms and slumps in world commodity prices," Journal of Development Economics, Elsevier, vol. 69(1), pages 277-296, October.
    4. Viviana Fernandez, 2008. "Traditional versus novel forecasting techniques: how much do we gain?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 637-648.
    5. Davidson, R. & Labys, W.C. & Lesourd, J.B., 1996. "Wavelet Analysis of Commodity Price Behavior," G.R.E.Q.A.M. 96b11, Universite Aix-Marseille III.
    6. Luís Aguiar-Conraria & Maria Soares, 2011. "Oil and the macroeconomy: using wavelets to analyze old issues," Empirical Economics, Springer, vol. 40(3), pages 645-655, May.
    7. Dehn, Jan, 2000. "The effects on growth of commodity price uncertainty and shocks," Policy Research Working Paper Series 2455, The World Bank.
    8. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafal, 2012. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," MPRA Paper 42563, University Library of Munich, Germany.
    9. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    10. Labys, W C & Lesourd, J B & Badillo, D, 1998. "The existence of metal price cycles," Resources Policy, Elsevier, vol. 24(3), pages 147-155, September.
    11. Clinton Watkins & Michael McAleer, 2004. "Econometric modelling of non-ferrous metal prices," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 651-701, December.
    12. Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
    13. Fernandez, Viviana, 2007. "Wavelet- and SVM-based forecasts: An analysis of the U.S. metal and materials manufacturing industry," Resources Policy, Elsevier, vol. 32(1-2), pages 80-89.
    14. Tonn, Victor Lux & Li, H.C. & McCarthy, Joseph, 2010. "Wavelet domain correlation between the futures prices of natural gas and oil," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 408-414, November.
    15. Dooley, Gillian & Lenihan, Helena, 2005. "An assessment of time series methods in metal price forecasting," Resources Policy, Elsevier, vol. 30(3), pages 208-217, September.
    16. Jammazi, Rania & Aloui, Chaker, 2010. "Wavelet decomposition and regime shifts: Assessing the effects of crude oil shocks on stock market returns," Energy Policy, Elsevier, vol. 38(3), pages 1415-1435, March.
    17. Tan, Zhongfu & Zhang, Jinliang & Wang, Jianhui & Xu, Jun, 2010. "Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models," Applied Energy, Elsevier, vol. 87(11), pages 3606-3610, November.
    18. Deaton, A., 1999. "Commodity Prices and Growth in Aftica," Papers 186, Princeton, Woodrow Wilson School - Development Studies.
    19. Davutyan, Nurhan & Roberts, Mark C., 1994. "Cyclicality in metal prices," Resources Policy, Elsevier, vol. 20(1), pages 49-57, March.
    20. Helmut Luetkepohl & Fang Xu, 2009. "The Role of the Log Transformation in Forecasting Economic Variables," CESifo Working Paper Series 2591, CESifo Group Munich.
    21. repec:cup:cbooks:9780521880206 is not listed on IDEAS
    22. Schlüter, Stephan & Deuschle, Carola, 2010. "Using wavelets for time series forecasting: Does it pay off?," IWQW Discussion Paper Series 04/2010, Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW).
    23. Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
    24. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
    25. Naccache, Théo, 2011. "Oil price cycles and wavelets," Energy Economics, Elsevier, vol. 33(2), pages 338-352, March.
    26. Connor Jeff & Rossiter Rosemary, 2005. "Wavelet Transforms and Commodity Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(1), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:39:y:2014:i:c:p:32-41. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.