IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i12p1089-d85667.html
   My bibliography  Save this article

Analyzing Crude Oil Spot Price Dynamics versus Long Term Future Prices: A Wavelet Analysis Approach

Author

Listed:
  • Josué M. Polanco-Martínez

    (Basque Centre for Climate Change—BC3, Edificio Sede No. 1, Planta 1ª, Basque Country University Science Park, 48940 Leioa, Spain
    UMR EPOC CNRS 5805, University Bordeaux, 33615 Pessac, France)

  • Luis M. Abadie

    (Basque Centre for Climate Change—BC3, Edificio Sede No. 1, Planta 1ª, Basque Country University Science Park, 48940 Leioa, Spain)

Abstract

The West Texas Intermediate (WTI) spot price shows high volatility and in 2014 and 2015 when quoted prices declined sharply, long-term prices in future markets were less volatile. These prices are different and diverge depending on how they process fundamental and transitory factors. US tight oil production has been a major innovation with significant macroeconomic effects. In this paper we use WTI spot prices and long-term futures prices, the latter calculated as the expected value with a stochastic model calibrated with the futures quotes of each sample day. These long-term prices are the long-term equilibrium value under risk neutral measurement. In order to analyze potential time-scale relationships between spots and future, we perform a wavelet cross-correlation analysis using a novel wavelet graphical tool recently proposed. To check the direction of the causality, we apply non-linear causality tests to raw data and log returns as well as to the wavelet transform of the spot and futures prices. Our results show that in the spot and futures markets for the period 24 February 2006–2 April 2016 there is a bi-directional causality effect for most time scales (from intra-week to biannual). This suggests that spot and futures prices react simultaneously to new information.

Suggested Citation

  • Josué M. Polanco-Martínez & Luis M. Abadie, 2016. "Analyzing Crude Oil Spot Price Dynamics versus Long Term Future Prices: A Wavelet Analysis Approach," Energies, MDPI, vol. 9(12), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1089-:d:85667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/12/1089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/12/1089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Chun-Ping & Lee, Chien-Chiang, 2015. "Do oil spot and futures prices move together?," Energy Economics, Elsevier, vol. 50(C), pages 379-390.
    2. Luís Aguiar-Conraria & Maria Soares, 2011. "Oil and the macroeconomy: using wavelets to analyze old issues," Empirical Economics, Springer, vol. 40(3), pages 645-655, May.
    3. Luis M. Abadie & José M. Chamorro, 2009. "Monte Carlo valuation of natural gas investments," Review of Financial Economics, John Wiley & Sons, vol. 18(1), pages 10-22, January.
    4. Bell, David & Kay, Jim & Malley, Jim, 1996. "A non-parametric approach to non-linear causality testing," Economics Letters, Elsevier, vol. 51(1), pages 7-18, April.
    5. Christopher R. Knittel & Robert S. Pindyck, 2016. "The Simple Economics of Commodity Price Speculation," American Economic Journal: Macroeconomics, American Economic Association, vol. 8(2), pages 85-110, April.
    6. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    7. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    8. Berry Wilson & Reena Aggarwal & Carla Inclan, 1996. "Detecting volatility changes across the oil sector," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(3), pages 313-330, May.
    9. Gallegati, Marco, 2008. "Wavelet analysis of stock returns and aggregate economic activity," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3061-3074, February.
    10. Maslyuk, Svetlana & Smyth, Russell, 2008. "Unit root properties of crude oil spot and futures prices," Energy Policy, Elsevier, vol. 36(7), pages 2591-2600, July.
    11. Jinghong Shu & Jin E. Zhang, 2012. "Causality in the VIX futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(1), pages 24-46, January.
    12. Yousefi, Shahriar & Weinreich, Ilona & Reinarz, Dominik, 2005. "Wavelet-based prediction of oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 265-275.
    13. Diks Cees & Panchenko Valentyn, 2005. "A Note on the Hiemstra-Jones Test for Granger Non-causality," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-9, June.
    14. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    15. George P. Papaioannou & Christos Dikaiakos & George Evangelidis & Panagiotis G. Papaioannou & Dionysios S. Georgiadis, 2015. "Co-Movement Analysis of Italian and Greek Electricity Market Wholesale Prices by Using a Wavelet Approach," Energies, MDPI, vol. 8(10), pages 1-30, October.
    16. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    17. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    18. Alzahrani, Mohammed & Masih, Mansur & Al-Titi, Omar, 2014. "Linear and non-linear Granger causality between oil spot and futures prices: A wavelet based test," Journal of International Money and Finance, Elsevier, vol. 48(PA), pages 175-201.
    19. Luis M. Abadie & Ibon Galarraga & Dirk Rübbelke, 2013. "Evaluation of Two Alternative Carbon Capture and Storage Technologies: A Stochastic Model," Working Papers 2013-07, BC3.
    20. Luis Mª Abadie & José M. Chamorro, 2016. "Revenue Risk of U.S. Tight-Oil Firms," Energies, MDPI, vol. 9(10), pages 1-18, October.
    21. Reboredo, Juan C. & Rivera-Castro, Miguel A., 2014. "Wavelet-based evidence of the impact of oil prices on stock returns," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 145-176.
    22. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    23. Su, Liangjun & White, Halbert, 2008. "A Nonparametric Hellinger Metric Test For Conditional Independence," Econometric Theory, Cambridge University Press, vol. 24(4), pages 829-864, August.
    24. Chiou-Wei, Song Zan & Chen, Ching-Fu & Zhu, Zhen, 2008. "Economic growth and energy consumption revisited -- Evidence from linear and nonlinear Granger causality," Energy Economics, Elsevier, vol. 30(6), pages 3063-3076, November.
    25. Naccache, Théo, 2011. "Oil price cycles and wavelets," Energy Economics, Elsevier, vol. 33(2), pages 338-352, March.
    26. Bekiros, Stelios D. & Diks, Cees G.H., 2008. "The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality," Energy Economics, Elsevier, vol. 30(5), pages 2673-2685, September.
    27. Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
    28. Hahn Shik Lee, 2004. "International transmission of stock market movements: a wavelet analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 11(3), pages 197-201.
    29. Gençay, Ramazan & Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon J., 2001. "An Introduction to Wavelets and Other Filtering Methods in Finance and Economics," Elsevier Monographs, Elsevier, edition 1, number 9780122796708.
    30. Hammoudeh, Shawkat & Li, Huimin & Jeon, Bang, 2003. "Causality and volatility spillovers among petroleum prices of WTI, gasoline and heating oil in different locations," The North American Journal of Economics and Finance, Elsevier, vol. 14(1), pages 89-114, March.
    31. Param Silvapulle & Imad A. Moosa, 1999. "The relationship between spot and futures prices: Evidence from the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(2), pages 175-193, April.
    32. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    33. Tonn, Victor Lux & Li, H.C. & McCarthy, Joseph, 2010. "Wavelet domain correlation between the futures prices of natural gas and oil," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 408-414, November.
    34. Benhmad, François, 2012. "Modeling nonlinear Granger causality between the oil price and U.S. dollar: A wavelet based approach," Economic Modelling, Elsevier, vol. 29(4), pages 1505-1514.
    35. Wang, Yudong & Wu, Chongfeng, 2013. "Are crude oil spot and futures prices cointegrated? Not always!," Economic Modelling, Elsevier, vol. 33(C), pages 641-650.
    36. François Benhmad, 2012. "Modeling Nonlinear Granger Causality between the Oil price and U.S Dollar," Post-Print hal-03062497, HAL.
    37. McDonald, Robert L & Siegel, Daniel R, 1985. "Investment and the Valuation of Firms When There Is an Option to Shut Down," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(2), pages 331-349, June.
    38. Shangkun Deng & Akito Sakurai, 2014. "Crude Oil Spot Price Forecasting Based on Multiple Crude Oil Markets and Timeframes," Energies, MDPI, vol. 7(5), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben Salem, Leila & Nouira, Ridha & Jeguirim, Khaled & Rault, Christophe, 2022. "The determinants of crude oil prices: Evidence from ARDL and nonlinear ARDL approaches," Resources Policy, Elsevier, vol. 79(C).
    2. Mobeen Ur Rehman, 2020. "Dynamic correlation pattern amongst alternative energy market for diversification opportunities," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-24, December.
    3. Junior, Peterson Owusu & Tiwari, Aviral Kumar & Padhan, Hemachandra & Alagidede, Imhotep, 2020. "Analysis of EEMD-based quantile-in-quantile approach on spot- futures prices of energy and precious metals in India," Resources Policy, Elsevier, vol. 68(C).
    4. Mohammed A. Shams & Hussein I. Anis & Mohammed El-Shahat, 2021. "Denoising of Heavily Contaminated Partial Discharge Signals in High-Voltage Cables Using Maximal Overlap Discrete Wavelet Transform," Energies, MDPI, vol. 14(20), pages 1-22, October.
    5. Polanco Martínez, Josué M. & Abadie, Luis M. & Fernández-Macho, J., 2018. "A multi-resolution and multivariate analysis of the dynamic relationships between crude oil and petroleum-product prices," Applied Energy, Elsevier, vol. 228(C), pages 1550-1560.
    6. Walid Mensi & Mobeen Ur Rehman & Muhammad Shafiullah & Khamis Hamed Al-Yahyaee & Ahmet Sensoy, 2021. "High frequency multiscale relationships among major cryptocurrencies: portfolio management implications," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-21, December.
    7. Polanco-Martínez, J.M. & Fernández-Macho, J. & Neumann, M.B. & Faria, S.H., 2018. "A pre-crisis vs. crisis analysis of peripheral EU stock markets by means of wavelet transform and a nonlinear causality test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1211-1227.
    8. Angeliki Skoura, 2019. "Detection of Lead-Lag Relationships Using Both Time Domain and Time-Frequency Domain; An Application to Wealth-To-Income Ratio," Economies, MDPI, vol. 7(2), pages 1-27, April.
    9. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    10. Manickavasagam, Jeevananthan & Visalakshmi, S. & Apergis, Nicholas, 2020. "A novel hybrid approach to forecast crude oil futures using intraday data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    11. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    12. Luis Mª Abadie & José M. Chamorro, 2017. "Valuation of Real Options in Crude Oil Production," Energies, MDPI, vol. 10(8), pages 1-21, August.
    13. Theodosios Perifanis, 2019. "Detecting West Texas Intermediate (WTI) Prices’ Bubble Periods," Energies, MDPI, vol. 12(14), pages 1-16, July.
    14. Miljkovic, Dragan & Goetz, Cole, 2020. "The effects of futures markets on oil spot price volatility in regional US markets," Applied Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polanco-Martínez, J.M. & Fernández-Macho, J. & Neumann, M.B. & Faria, S.H., 2018. "A pre-crisis vs. crisis analysis of peripheral EU stock markets by means of wavelet transform and a nonlinear causality test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1211-1227.
    2. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2017. "The relationship between regional natural gas markets and crude oil markets from a multi-scale nonlinear Granger causality perspective," Energy Economics, Elsevier, vol. 67(C), pages 98-110.
    3. Dong, Minyi & Chang, Chun-Ping & Gong, Qiang & Chu, Yin, 2019. "Revisiting global economic activity and crude oil prices: A wavelet analysis," Economic Modelling, Elsevier, vol. 78(C), pages 134-149.
    4. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    5. Alzahrani, Mohammed & Masih, Mansur & Al-Titi, Omar, 2014. "Linear and non-linear Granger causality between oil spot and futures prices: A wavelet based test," Journal of International Money and Finance, Elsevier, vol. 48(PA), pages 175-201.
    6. Tiwari, Aviral Kumar & Dar, Arif Billah & Bhanja, Niyati, 2013. "Oil price and exchange rates: A wavelet based analysis for India," Economic Modelling, Elsevier, vol. 31(C), pages 414-422.
    7. Balcilar, Mehmet & Gungor, Hasan & Hammoudeh, Shawkat, 2015. "The time-varying causality between spot and futures crude oil prices: A regime switching approach," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 51-71.
    8. Nazlioglu, Saban, 2011. "World oil and agricultural commodity prices: Evidence from nonlinear causality," Energy Policy, Elsevier, vol. 39(5), pages 2935-2943, May.
    9. Boying Li & Chun-Ping Chang & Yin Chu & Bo Sui, 2020. "Oil prices and geopolitical risks: What implications are offered via multi-domain investigations?," Energy & Environment, , vol. 31(3), pages 492-516, May.
    10. Xiaojie Xu, 2018. "Causal structure among US corn futures and regional cash prices in the time and frequency domain," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(13), pages 2455-2480, October.
    11. Chang, Chun-Ping & Lee, Chien-Chiang, 2015. "Do oil spot and futures prices move together?," Energy Economics, Elsevier, vol. 50(C), pages 379-390.
    12. Witold Orzeszko, 2021. "Nonlinear Causality between Crude Oil Prices and Exchange Rates: Evidence and Forecasting," Energies, MDPI, vol. 14(19), pages 1-16, September.
    13. Andreasson, Pierre & Bekiros, Stelios & Nguyen, Duc Khuong & Uddin, Gazi Salah, 2016. "Impact of speculation and economic uncertainty on commodity markets," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 115-127.
    14. Yu, Lean & Li, Jingjing & Tang, Ling & Wang, Shuai, 2015. "Linear and nonlinear Granger causality investigation between carbon market and crude oil market: A multi-scale approach," Energy Economics, Elsevier, vol. 51(C), pages 300-311.
    15. Sebastian Nick, 2016. "The Informational Efficiency of European Natural Gas Hubs: Price Formation and Intertemporal Arbitrage," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    16. Torun, Erdost & Chang, Tzu-Pu & Chou, Ray Y., 2020. "Causal relationship between spot and futures prices with multiple time horizons: A nonparametric wavelet Granger causality test," Research in International Business and Finance, Elsevier, vol. 52(C).
    17. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    18. repec:ipg:wpaper:2014-441 is not listed on IDEAS
    19. Ederington, Louis H. & Fernando, Chitru S. & Hoelscher, Seth A. & Lee, Thomas K. & Linn, Scott C., 2019. "Characteristics of petroleum product prices: A survey," Journal of Commodity Markets, Elsevier, vol. 14(C), pages 1-15.
    20. Chang, Kuang-Liang & Lee, Chingnun, 2020. "The asymmetric spillover effect of the Markov switching mechanism from the futures market to the spot market," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 374-388.
    21. Power, Gabriel J. & Eaves, James & Turvey, Calum & Vedenov, Dmitry, 2017. "Catching the curl: Wavelet thresholding improves forward curve modelling," Economic Modelling, Elsevier, vol. 64(C), pages 312-321.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1089-:d:85667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.