IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v140y2024ics014098832400673x.html
   My bibliography  Save this article

Price discovery redux—Analyzing energy spot and futures prices using a dynamic programming approach

Author

Listed:
  • Vatsa, Puneet
  • Miljkovic, Tatjana
  • Miljkovic, Dragan

Abstract

We employ dynamic time warping (DTW), a non-parametric pattern recognition technique based on a dynamic programming algorithm, to analyze whether futures markets for crude oil and natural gas have facilitated price discovery over the last decade. Should futures prices absorb and reflect information before spot prices, they will move first and lead spot prices, suggesting that they dominate spot prices and play an important role in price discovery. The results show that natural gas futures prices led spot prices more frequently between 2019 and 2023 than during the five years preceding this turbulent period. In the case of crude oil, however, futures prices lagged spot prices more often than leading them. The evidence suggests that futures prices have not consistently fulfilled their price discovery role in the two energy markets. The results also indicate that short-term futures contracts play a more dominant role in price discovery than long-term contracts. Additionally, we demonstrate the advantages of DTW: it lends itself well to analyzing small samples with different orders of integration; it can discover linear and nonlinear relationships between time series; notably, it can detect period-to-period changes in the duration and direction of lead-lag associations between two series and present the results intelligibly.

Suggested Citation

  • Vatsa, Puneet & Miljkovic, Tatjana & Miljkovic, Dragan, 2024. "Price discovery redux—Analyzing energy spot and futures prices using a dynamic programming approach," Energy Economics, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:eneeco:v:140:y:2024:i:c:s014098832400673x
    DOI: 10.1016/j.eneco.2024.107965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832400673X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Chun-Ping & Lee, Chien-Chiang, 2015. "Do oil spot and futures prices move together?," Energy Economics, Elsevier, vol. 50(C), pages 379-390.
    2. Jena, Sangram Keshari & Tiwari, Aviral Kumar & Hammoudeh, Shawkat & Roubaud, David, 2019. "Distributional predictability between commodity spot and futures: Evidence from nonparametric causality-in-quantiles tests," Energy Economics, Elsevier, vol. 78(C), pages 615-628.
    3. Vatsa, Puneet & Baek, Jungho, 2023. "Asymmetric influence of oil demand and supply shocks on meat commodities," Energy Economics, Elsevier, vol. 128(C).
    4. Lu, Feng-bin & Hong, Yong-miao & Wang, Shou-yang & Lai, Kin-keung & Liu, John, 2014. "Time-varying Granger causality tests for applications in global crude oil markets," Energy Economics, Elsevier, vol. 42(C), pages 289-298.
    5. Garbade, Kenneth D & Silber, William L, 1983. "Price Movements and Price Discovery in Futures and Cash Markets," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 289-297, May.
    6. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    7. Giorgino, Toni, 2009. "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i07).
    8. Caporin, Massimiliano & Costola, Michele, 2022. "Time-varying Granger causality tests in the energy markets: A study on the DCC-MGARCH Hong test," Energy Economics, Elsevier, vol. 111(C).
    9. Miljkovic, Dragan & Vatsa, Puneet, 2023. "On the linkages between energy and agricultural commodity prices: A dynamic time warping analysis," International Review of Financial Analysis, Elsevier, vol. 90(C).
    10. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    11. Shrestha, Keshab, 2014. "Price discovery in energy markets," Energy Economics, Elsevier, vol. 45(C), pages 229-233.
    12. Oguzhan Cepni & Tarik Dogru & Ozgur Ozdemir, 2023. "The contagion effect of COVID-19-induced uncertainty on US tourism sector: Evidence from time-varying granger causality test," Tourism Economics, , vol. 29(4), pages 906-928, June.
    13. de Jong, Johan & Sonnemans, Joep & Tuinstra, Jan, 2022. "The effect of futures markets on the stability of commodity prices," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 176-211.
    14. Kilian, Lutz & Rebucci, Alessandro & Spatafora, Nikola, 2009. "Oil shocks and external balances," Journal of International Economics, Elsevier, vol. 77(2), pages 181-194, April.
    15. Robert S. Pindyck, 2001. "The Dynamics of Commodity Spot and Futures Markets: A Primer," The Energy Journal, , vol. 22(3), pages 1-29, July.
    16. Bekiros, Stelios D. & Diks, Cees G.H., 2008. "The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality," Energy Economics, Elsevier, vol. 30(5), pages 2673-2685, September.
    17. Imad A. Moosa, 2002. "Price Discovery and Risk Transfer in the Crude Oil Futures Market: Some Structural Time Series Evidence," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(1), pages 155-165, February.
    18. Silvério, Renan & Szklo, Alexandre, 2012. "The effect of the financial sector on the evolution of oil prices: Analysis of the contribution of the futures market to the price discovery process in the WTI spot market," Energy Economics, Elsevier, vol. 34(6), pages 1799-1808.
    19. Xiaojie Xu, 2018. "Cointegration and price discovery in US corn cash and futures markets," Empirical Economics, Springer, vol. 55(4), pages 1889-1923, December.
    20. Param Silvapulle & Imad A. Moosa, 1999. "The relationship between spot and futures prices: Evidence from the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(2), pages 175-193, April.
    21. Shrestha, Keshab & Subramaniam, Ravichandran & Peranginangin, Yessy & Philip, Sheena Sara Suresh, 2018. "Quantile hedge ratio for energy markets," Energy Economics, Elsevier, vol. 71(C), pages 253-272.
    22. Wang, Yudong & Wu, Chongfeng, 2013. "Are crude oil spot and futures prices cointegrated? Not always!," Economic Modelling, Elsevier, vol. 33(C), pages 641-650.
    23. Rafael Baptista Palazzi & Ata Assaf & Marcelo Cabus Klotzle, 2024. "Dynamic connectedness between energy markets and the Brazilian cash market: An empirical analysis pre‐ and post‐COVID‐19," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(1), pages 27-56, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mensi, Walid & Brahim, Mariem & Hammoudeh, Shawkat & Tiwari, Aviral Kumar & Kang, Sang Hoon, 2024. "Time-varying causality and correlations between spot and futures prices of natural gas, crude oil, heating oil, and gasoline," Resources Policy, Elsevier, vol. 93(C).
    2. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    3. Chang, Kuang-Liang & Lee, Chingnun, 2020. "The asymmetric spillover effect of the Markov switching mechanism from the futures market to the spot market," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 374-388.
    4. Shao, Mingao & Hua, Yongjun, 2022. "Price discovery efficiency of China's crude oil futures: Evidence from the Shanghai crude oil futures market," Energy Economics, Elsevier, vol. 112(C).
    5. Josué M. Polanco-Martínez & Luis M. Abadie, 2016. "Analyzing Crude Oil Spot Price Dynamics versus Long Term Future Prices: A Wavelet Analysis Approach," Energies, MDPI, vol. 9(12), pages 1-19, December.
    6. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    7. Guglielmo Maria Caporale & Davide Ciferri & Alessandro Girardi, 2014. "Time-Varying Spot and Futures Oil Price Dynamics," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(1), pages 78-97, February.
    8. You‐How Go & Wee‐Yeap Lau, 2023. "What do we know about informational efficiency? Three puzzles and the new direction forward," Journal of Economic Surveys, Wiley Blackwell, vol. 37(4), pages 1489-1525, September.
    9. Ruchika Kaura & Namita Rajput, 2024. "Future–Spot Relationship in Commodity Market: A Comparison Across Commodity Segments in India," Global Business Review, International Management Institute, vol. 25(5), pages 1314-1335, October.
    10. Figuerola-Ferretti, Isabel & McCrorie, J. Roderick & Paraskevopoulos, Ioannis, 2020. "Mild explosivity in recent crude oil prices," Energy Economics, Elsevier, vol. 87(C).
    11. Xianfang Su & Huiming Zhu & Xinxia Yang, 2019. "Heterogeneous Causal Relationships between Spot and Futures Oil Prices: Evidence from Quantile Causality Analysis," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    12. Dong, Minyi & Chang, Chun-Ping & Gong, Qiang & Chu, Yin, 2019. "Revisiting global economic activity and crude oil prices: A wavelet analysis," Economic Modelling, Elsevier, vol. 78(C), pages 134-149.
    13. Arfaoui, Mongi, 2018. "On the spot-futures relationship in crude-refined petroleum prices: New evidence from an ARDL bounds testing approach," Journal of Commodity Markets, Elsevier, vol. 11(C), pages 48-58.
    14. Raushan Kumar, 2017. "Price Discovery in Some Primary Commodity Markets in India," Economics Bulletin, AccessEcon, vol. 37(3), pages 1817-1829.
    15. Chang, Chun-Ping & Lee, Chien-Chiang, 2015. "Do oil spot and futures prices move together?," Energy Economics, Elsevier, vol. 50(C), pages 379-390.
    16. Balcilar, Mehmet & Gungor, Hasan & Hammoudeh, Shawkat, 2015. "The time-varying causality between spot and futures crude oil prices: A regime switching approach," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 51-71.
    17. Ziliang Yu & Jian Yang & Robert I. Webb, 2023. "Price discovery in China's crude oil futures markets: An emerging Asian benchmark?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(3), pages 297-324, March.
    18. Jena, Sangram Keshari & Tiwari, Aviral Kumar & Hammoudeh, Shawkat & Roubaud, David, 2019. "Distributional predictability between commodity spot and futures: Evidence from nonparametric causality-in-quantiles tests," Energy Economics, Elsevier, vol. 78(C), pages 615-628.
    19. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2019. "Crude oil price shocks and hedging performance: A comparison of volatility models," Energy Economics, Elsevier, vol. 81(C), pages 1132-1147.
    20. Yuki Toyoshima & Shigeyuki Hamori, 2018. "Measuring the Time-Frequency Dynamics of Return and Volatility Connectedness in Global Crude Oil Markets," Energies, MDPI, vol. 11(11), pages 1-18, October.

    More about this item

    Keywords

    Price discovery; Crude oil; Natural gas; Futures prices; Dynamic time warping;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:140:y:2024:i:c:s014098832400673x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.