IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej37-2-nick.html
   My bibliography  Save this article

The Informational Efficiency of European Natural Gas Hubs: Price Formation and Intertemporal Arbitrage

Author

Listed:
  • Sebastian Nick

Abstract

In this study, the informational efficiency of the European natural gas market is analyzed by empirically investigating price formation and arbitrage efficiency between spot and futures markets. Econometric approaches accounting for nonlinearities induced by the low liquidity-framework and by technical constraints of the considered gas hubs are specified. The empirical results reveal that price discovery generally takes place on the futures market. Thus, the futures market seems to be more informationally efficient than the spot market. The theory of storage seems to hold at all hubs in the long run. There is empirical evidence of significant market frictions hampering intertemporal arbitrage. UK's NBP and Austria's CEGH seem to be the hubs at which arbitrage opportunities are exhausted most efficiently, although there is convergence in the degree of intertemporal arbitrage efficiency over time at the hubs investigated.

Suggested Citation

  • Sebastian Nick, 2016. "The Informational Efficiency of European Natural Gas Hubs: Price Formation and Intertemporal Arbitrage," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  • Handle: RePEc:aen:journl:ej37-2-nick
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2750
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    2. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2008. "Liquidity and market efficiency," Journal of Financial Economics, Elsevier, vol. 87(2), pages 249-268, February.
    3. Jinghong Shu & Jin E. Zhang, 2012. "Causality in the VIX futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(1), pages 24-46, January.
    4. Balke, Nathan S & Fomby, Thomas B, 1997. "Threshold Cointegration," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(3), pages 627-645, August.
    5. Stern, Jonathan, 2014. "International gas pricing in Europe and Asia: A crisis of fundamentals," Energy Policy, Elsevier, vol. 64(C), pages 43-48.
    6. Bekiros, Stelios D. & Diks, Cees G.H., 2008. "The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality," Energy Economics, Elsevier, vol. 30(5), pages 2673-2685, September.
    7. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
    8. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    9. Keyaerts, Nico & D'haeseleer, William, 2012. "Increasing efficiency through market-based cross-border procurement of gas-balancing services in Europe," Energy, Elsevier, vol. 47(1), pages 564-576.
    10. Stelios Bekiros, 2011. "Nonlinear causality testing with stepwise multivariate filtering," Economics Working Papers ECO2011/22, European University Institute.
    11. Diks Cees & Panchenko Valentyn, 2005. "A Note on the Hiemstra-Jones Test for Granger Non-causality," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-9, June.
    12. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2013. "On the short- and long-run efficiency of energy and precious metal markets," Energy Economics, Elsevier, vol. 40(C), pages 832-844.
    13. Fama, Eugene F & French, Kenneth R, 1987. "Commodity Futures Prices: Some Evidence on Forecast Power, Premiums,and the Theory of Storage," The Journal of Business, University of Chicago Press, vol. 60(1), pages 55-73, January.
    14. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    15. Nick, Sebastian & Thoenes, Stefan, 2014. "What drives natural gas prices? — A structural VAR approach," Energy Economics, Elsevier, vol. 45(C), pages 517-527.
    16. Asche, Frank & Misund, Bård & Sikveland, Marius, 2013. "The relationship between spot and contract gas prices in Europe," Energy Economics, Elsevier, vol. 38(C), pages 212-217.
    17. Imad A. Moosa & Nabeel E. Al‐Loughani, 1995. "The effectiveness of arbitrage and speculation in the crude oil futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(2), pages 167-186, April.
    18. Thomas V. Schwarz & Andrew C. Szakmary, 1994. "Price discovery in petroleum markets: Arbitrage, cointegration, and the time interval of analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 14(2), pages 147-167, April.
    19. Ming-Yuan Leon Li, 2010. "Dynamic hedge ratio for stock index futures: application of threshold VECM," Applied Economics, Taylor & Francis Journals, vol. 42(11), pages 1403-1417.
    20. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    21. Anne Neumann & Boriss Siliverstovs & Christian von Hirschhausen, 2006. "Convergence of European spot market prices for natural gas? A real-time analysis of market integration using the Kalman Filter," Applied Economics Letters, Taylor & Francis Journals, vol. 13(11), pages 727-732.
    22. Enders, Walter & Siklos, Pierre L, 2001. "Cointegration and Threshold Adjustment," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 166-176, April.
    23. Gebre-Mariam, Yohannes Kebede, 2011. "Testing for unit roots, causality, cointegration, and efficiency: The case of the northwest US natural gas market," Energy, Elsevier, vol. 36(5), pages 3489-3500.
    24. Granger, C W J & Lee, T H, 1989. "Investigation of Production, Sales and Inventory Relationships Using Multicointegration and Non-symmetric Error Correction Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(S), pages 145-159, Supplemen.
    25. Christian Growitsch & Marcus Stronzik & Rabindra Nepal, 2015. "Price Convergence and Information Efficiency in German Natural Gas Markets," German Economic Review, Verein für Socialpolitik, vol. 16(1), pages 87-103, February.
    26. Root, Thomas H. & Lien, Donald, 2003. "Can modeling the natural gas futures market as a threshold cointegrated system improve hedging and forecasting performance?," International Review of Financial Analysis, Elsevier, vol. 12(2), pages 117-133.
    27. Dergiades, Theologos & Madlener, Reinhard & Christofidou, Georgia, 2012. "The Nexus between Natural Gas Spot and Futures Prices at NYMEX: Do Weather Shocks and Non-Linear Causality in Low Frequencies Matter?," FCN Working Papers 17/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Sep 2013.
    28. Param Silvapulle & Imad A. Moosa, 1999. "The relationship between spot and futures prices: Evidence from the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(2), pages 175-193, April.
    29. Timothy J. Considine & Donald F. Larson, 2001. "Risk premiums on inventory assets: the case of crude oil and natural gas," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(2), pages 109-126, February.
    30. Huang, Bwo-Nung & Yang, C.W. & Hwang, M.J., 2009. "The dynamics of a nonlinear relationship between crude oil spot and futures prices: A multivariate threshold regression approach," Energy Economics, Elsevier, vol. 31(1), pages 91-98, January.
    31. An-Sing Chen & James Wuh Lin, 2004. "Cointegration and detectable linear and nonlinear causality: analysis using the London Metal Exchange lead contract," Applied Economics, Taylor & Francis Journals, vol. 36(11), pages 1157-1167.
    32. Stronzik, Marcus & Rammerstorfer, Margarethe & Neumann, Anne, 2009. "Does the European natural gas market pass the competitive benchmark of the theory of storage? Indirect tests for three major trading points," Energy Policy, Elsevier, vol. 37(12), pages 5432-5439, December.
    33. Schultz, Emma & Swieringa, John, 2013. "Price discovery in European natural gas markets," Energy Policy, Elsevier, vol. 61(C), pages 628-634.
    34. Anderson, Heather M, 1997. "Transaction Costs and Non-linear Adjustment towards Equilibrium in the US Treasury Bill Market," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(4), pages 465-484, November.
    35. Hiemstra, Craig & Jones, Jonathan D, 1994. " Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    36. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej37-2-nick. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Williams). General contact details of provider: http://edirc.repec.org/data/iaeeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.