IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v93y2005i1p58-80.html
   My bibliography  Save this article

A new test for multivariate normality

Author

Listed:
  • Szekely, Gábor J.
  • Rizzo, Maria L.

Abstract

We propose a new class of rotation invariant and consistent goodness-of-fit tests for multivariate distributions based on Euclidean distance between sample elements. The proposed test applies to any multivariate distribution with finite second moments. In this article we apply the new method for testing multivariate normality when parameters are estimated. The resulting test is affine invariant and consistent against all fixed alternatives. A comparative Monte Carlo study suggests that our test is a powerful competitor to existing tests, and is very sensitive against heavy tailed alternatives.

Suggested Citation

  • Szekely, Gábor J. & Rizzo, Maria L., 2005. "A new test for multivariate normality," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 58-80, March.
  • Handle: RePEc:eee:jmvana:v:93:y:2005:i:1:p:58-80
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00212-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thas, O. & Ottoy, J. P., 2003. "Some generalizations of the Anderson-Darling statistic," Statistics & Probability Letters, Elsevier, vol. 64(3), pages 255-261, September.
    2. L. Baringhaus & N. Henze, 1988. "A consistent test for multivariate normality based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 339-348, December.
    3. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.
    4. Romeu, J. L. & Ozturk, A., 1993. "A Comparative Study of Goodness-of-Fit Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 309-334, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Li & Yao Yu, 2015. "A Nonparametric Test of Missing Completely at Random for Incomplete Multivariate Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 707-726, September.
    2. Ebner, Bruno, 2012. "Asymptotic theory for the test for multivariate normality by Cox and Small," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 368-379.
    3. Barigozzi, Matteo & Alessi, Lucia & Capasso, Marco & Fagiolo, Giorgio, 2012. "The distribution of household consumption-expenditure budget shares," Structural Change and Economic Dynamics, Elsevier, vol. 23(1), pages 69-91.
    4. Jörg-Peter Schräpler, 2011. "Konstruktion von SGB II – Dichten als Raumindikator und ihre Verwendung als Indikator im Rahmen der Sozialberichterstattung am Beispiel der „sozialen Belastung“ von Schulstandorten in NRW – ein Kerndi," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 5(2), pages 97-124, August.
    5. Sandeep R. Chandukala & Jeffrey P. Dotson & Jeff D. Brazell & Greg M. Allenby, 2011. "Bayesian Analysis of Hierarchical Effects," Marketing Science, INFORMS, vol. 30(1), pages 123-133, 01-02.
    6. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions," International Journal of Forecasting, Elsevier, vol. 24(4), pages 710-727.
    7. Ravi Kashyap, 2016. "Combining Dimension Reduction, Distance Measures and Covariance," Papers 1603.09060, arXiv.org, revised Nov 2017.
    8. Meintanis, Simos G. & Ngatchou-Wandji, Joseph & Taufer, Emanuele, 2015. "Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 171-192.
    9. Cuesta-Albertos, J.A. & del Barrio, E. & Fraiman, R. & Matran, C., 2007. "The random projection method in goodness of fit for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4814-4831, June.
    10. Cees Diks & Valentyn Panchenko, 2005. "Nonparametric Tests for Serial Independence Based on Quadratic Forms," Tinbergen Institute Discussion Papers 05-076/1, Tinbergen Institute.
    11. Huang, Yufen & Kao, Tzu-Ling & Wang, Tai-Ho, 2007. "Influence functions and local influence in linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3844-3861, May.
    12. Simos G. Meintanis & James Allison & Leonard Santana, 2016. "Goodness-of-fit tests for semiparametric and parametric hypotheses based on the probability weighted empirical characteristic function," Statistical Papers, Springer, vol. 57(4), pages 957-976, December.
    13. Patra, Rohit K. & Sen, Bodhisattva & Székely, Gábor J., 2016. "On a nonparametric notion of residual and its applications," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 208-213.
    14. Rizzo, Maria L. & Haman, John T., 2016. "Expected distances and goodness-of-fit for the asymmetric Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 158-164.
    15. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    16. Araújo, Tanya & Dias, João & Eleutério, Samuel & Louçã, Francisco, 2013. "A measure of multivariate kurtosis for the identification of the dynamics of a N-dimensional market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3708-3714.
    17. Dutta, Subhajit & Genton, Marc G., 2014. "A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 82-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:93:y:2005:i:1:p:58-80. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.