IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v29y2020i4d10.1007_s11749-020-00740-0.html
   My bibliography  Save this article

Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics

Author

Listed:
  • Bruno Ebner

    (Karlsruhe Institute of Technology (KIT))

  • Norbert Henze

    (Karlsruhe Institute of Technology (KIT))

Abstract

This article gives a synopsis on new developments in affine invariant tests for multivariate normality in an i.i.d.-setting, with special emphasis on asymptotic properties of several classes of weighted $$L^2$$ L 2 -statistics. Since weighted $$L^2$$ L 2 -statistics typically have limit normal distributions under fixed alternatives to normality, they open ground for a neighborhood of model validation for normality. The paper also reviews several other invariant tests for this problem, notably the energy test, and it presents the results of a large-scale simulation study. All tests under study are implemented in the accompanying R-package mnt.

Suggested Citation

  • Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
  • Handle: RePEc:spr:testjl:v:29:y:2020:i:4:d:10.1007_s11749-020-00740-0
    DOI: 10.1007/s11749-020-00740-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-020-00740-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-020-00740-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henze, Norbert, 1997. "Limit laws for multivariate skewness in the sense of Móri, Rohatgi and Székely," Statistics & Probability Letters, Elsevier, vol. 33(3), pages 299-307, May.
    2. Tenreiro, Carlos, 2009. "On the choice of the smoothing parameter for the BHEP goodness-of-fit test," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1038-1053, February.
    3. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.
    4. Tomoya Yamada & Megan Romer & Donald Richards, 2015. "Kurtosis tests for multivariate normality with monotone incomplete data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 532-557, September.
    5. Jönsson, Kristian, 2011. "A robust test for multivariate normality," Economics Letters, Elsevier, vol. 113(2), pages 199-201.
    6. Kim, Namhyun, 2016. "A robustified Jarque–Bera test for multivariate normality," Economics Letters, Elsevier, vol. 140(C), pages 48-52.
    7. L. Baringhaus & N. Henze, 1988. "A consistent test for multivariate normality based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 339-348, December.
    8. Norbert Henze & Jaco Visagie, 2020. "Testing for normality in any dimension based on a partial differential equation involving the moment generating function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1109-1136, October.
    9. Naito, Kanta, 1998. "Approximation of the Power of Kurtosis Test for Multinormality," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 166-180, May.
    10. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    11. Ebner, Bruno, 2012. "Asymptotic theory for the test for multivariate normality by Cox and Small," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 368-379.
    12. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    13. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    14. Liang, Jia-Juan & Bentler, Peter M., 1999. "A t-distribution plot to detect non-multinormality," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 31-44, March.
    15. Srivastava, M. S. & Hui, T. K., 1987. "On assessing multivariate normality based on shapiro-wilk W statistic," Statistics & Probability Letters, Elsevier, vol. 5(1), pages 15-18, January.
    16. Takayuki Yamada & Tetsuto Himeno, 2019. "Estimation of multivariate 3rd moment for high-dimensional data and its application for testing multivariate normality," Computational Statistics, Springer, vol. 34(2), pages 911-941, June.
    17. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    18. Ming Zhou & Yongzhao Shao, 2014. "A powerful test for multivariate normality," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 351-363, February.
    19. Liang, Jiajuan & Pan, William S.Y. & Yang, Zhen-Hai, 2004. "Characterization-based Q-Q plots for testing multinormality," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 183-190, December.
    20. Fang, Kai-Tai & Li, Run-Ze & Liang, Jia-Juan, 1998. "A multivariate version of Ghosh's T3-plot to detect non-multinormality," Computational Statistics & Data Analysis, Elsevier, vol. 28(4), pages 371-386, October.
    21. Annaliisa Kankainen & Sara Taskinen & Hannu Oja, 2007. "Tests of multinormality based on location vectors and scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(3), pages 357-379, November.
    22. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    23. H. Holgersson, 2006. "A graphical method for assessing multivariate normality," Computational Statistics, Springer, vol. 21(1), pages 141-149, March.
    24. L. Baringhaus & B. Ebner & N. Henze, 2017. "The limit distribution of weighted $$L^2$$ L 2 -goodness-of-fit statistics under fixed alternatives, with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 969-995, October.
    25. Måns Thulin, 2014. "Tests for multivariate normality based on canonical correlations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 189-208, June.
    26. Baringhaus, L. & Henze, N., 1991. "Limit distributions for measures of multivariate skewness and kurtosis based on projections," Journal of Multivariate Analysis, Elsevier, vol. 38(1), pages 51-69, July.
    27. Vassilly Voinov & Natalie Pya & Rashid Makarov & Yevgeniy Voinov, 2016. "New invariant and consistent chi-squared type goodness-of-fit tests for multivariate normality and a related comparative simulation study," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(11), pages 3249-3263, June.
    28. Klar, Bernhard, 2002. "A Treatment of Multivariate Skewness, Kurtosis, and Related Statistics," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 141-165, October.
    29. Henze, Norbert & Jiménez–Gamero, M. Dolores & Meintanis, Simos G., 2019. "Characterizations Of Multinormality And Corresponding Tests Of Fit, Including For Garch Models," Econometric Theory, Cambridge University Press, vol. 35(3), pages 510-546, June.
    30. Alessandro Manzotti & Adolfo Quiroz, 2001. "Spherical harmonics in quadratic forms for testing multivariate normality," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 87-104, June.
    31. Piotr Majerski & Zbigniew Szkutnik, 2010. "Approximations to most powerful invariant tests for multinormality against some irregular alternatives," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 113-130, May.
    32. Holger Dette & Axel Munk, 2003. "Some Methodological Aspects of Validation of Models in Nonparametric Regression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(2), pages 207-244, May.
    33. Tan, Ming & Fang, Hong-Bin & Tian, Guo-Liang & Wei, Gang, 2005. "Testing multivariate normality in incomplete data of small sample size," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 164-179, March.
    34. Henze, Norbert, 1997. "Extreme smoothing and testing for multivariate normality," Statistics & Probability Letters, Elsevier, vol. 35(3), pages 203-213, October.
    35. Lee, Sangyeol & Ng, Chi Tim, 2011. "Normality test for multivariate conditional heteroskedastic dynamic regression models," Economics Letters, Elsevier, vol. 111(1), pages 75-77, April.
    36. Szekely, Gábor J. & Rizzo, Maria L., 2005. "A new test for multivariate normality," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 58-80, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfonso García-Pérez, 2021. "New Robust Cross-Variogram Estimators and Approximations of Their Distributions Based on Saddlepoint Techniques," Mathematics, MDPI, vol. 9(7), pages 1-21, April.
    2. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    3. Bruno Ebner & Norbert Henze & Simos Meintanis, 2024. "A unified approach to goodness-of-fit testing for spherical and hyperspherical data," Statistical Papers, Springer, vol. 65(6), pages 3447-3475, August.
    4. Chen, Feifei & Jiménez–Gamero, M. Dolores & Meintanis, Simos & Zhu, Lixing, 2022. "A general Monte Carlo method for multivariate goodness–of–fit testing applied to elliptical families," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    5. Alfonso García-Pérez, 2022. "On Robustness for Spatio-Temporal Data," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    6. Jianqing Fan & Weining Wang & Yue Zhao, 2024. "Conditional nonparametric variable screening by neural factor regression," Papers 2408.10825, arXiv.org.
    7. Jurgita Arnastauskaitė & Tomas Ruzgas & Mindaugas Bražėnas, 2021. "A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study," Mathematics, MDPI, vol. 9(23), pages 1-20, November.
    8. Yiwen Cao & Jiajuan Liang & Longhao Xu & Jiangrui Kang, 2024. "Testing Multivariate Normality Based on Beta-Representative Points," Mathematics, MDPI, vol. 12(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    2. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    3. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    4. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    5. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    6. Chen, Feifei & Jiménez–Gamero, M. Dolores & Meintanis, Simos & Zhu, Lixing, 2022. "A general Monte Carlo method for multivariate goodness–of–fit testing applied to elliptical families," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    7. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    8. Ebner, Bruno, 2012. "Asymptotic theory for the test for multivariate normality by Cox and Small," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 368-379.
    9. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    10. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    11. Liang, Jiajuan & Tang, Man-Lai & Chan, Ping Shing, 2009. "A generalized Shapiro-Wilk W statistic for testing high-dimensional normality," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3883-3891, September.
    12. Simos G. Meintanis & James Allison & Leonard Santana, 2016. "Goodness-of-fit tests for semiparametric and parametric hypotheses based on the probability weighted empirical characteristic function," Statistical Papers, Springer, vol. 57(4), pages 957-976, December.
    13. Takayuki Yamada & Tetsuto Himeno, 2019. "Estimation of multivariate 3rd moment for high-dimensional data and its application for testing multivariate normality," Computational Statistics, Springer, vol. 34(2), pages 911-941, June.
    14. M. Dolores Jiménez-Gamero, 2020. "Comments on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 893-897, December.
    15. Norbert Henze & Jaco Visagie, 2020. "Testing for normality in any dimension based on a partial differential equation involving the moment generating function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1109-1136, October.
    16. Norbert Henze & Celeste Mayer, 2020. "More good news on the HKM test for multivariate reflected symmetry about an unknown centre," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 741-770, June.
    17. Tanya Araujo & João Dias & Samuel Eleutério & Francisco Louçã, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Working Papers Department of Economics 2012/21, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    18. Jurgita Arnastauskaitė & Tomas Ruzgas & Mindaugas Bražėnas, 2021. "A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study," Mathematics, MDPI, vol. 9(23), pages 1-20, November.
    19. Tanya Ara'ujo & Jo~ao Dias & Samuel Eleut'erio & Francisco Louc{c}~a, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Papers 1207.1202, arXiv.org.
    20. Meintanis, Simos G. & Ngatchou-Wandji, Joseph & Taufer, Emanuele, 2015. "Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 171-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:29:y:2020:i:4:d:10.1007_s11749-020-00740-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.