IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i2p256-281.html
   My bibliography  Save this article

A test for elliptical symmetry

Author

Listed:
  • Huffer, Fred W.
  • Park, Cheolyong

Abstract

This paper presents a statistic for testing the hypothesis of elliptical symmetry. The statistic also provides a specialized test of multivariate normality. We obtain the asymptotic distribution of this statistic under the null hypothesis of multivariate normality, and give a bootstrapping procedure for approximating the null distribution of the statistic under an arbitrary elliptically symmetric distribution. We present simulation results to examine the accuracy of the asymptotic distribution and the performance of the bootstrapping procedure. Finally, for selected alternatives, we compare the power of our test statistic with that of recently proposed tests for elliptical symmetry given by Manzotti et al. [A statistic for testing the null hypothesis of elliptical symmetry, J. Multivariate Anal. 81 (2002) 274-285] and Schott [Testing for elliptical symmetry in covariance-matrix-based analyses, Statist. Probab. Lett. 60 (2002) 395-404], and with that of the well known tests for multivariate normality of Mardia [Measures of multivariate skewness and kurtosis with applications, Biometrika 57 (1970) 519-530] and Baringhaus and Henze [A consistent test for multivariate normality based on the empirical characteristic function, Metrika 35 (1988) 339-348].

Suggested Citation

  • Huffer, Fred W. & Park, Cheolyong, 2007. "A test for elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 256-281, February.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:2:p:256-281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00165-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hodgson, Douglas J & Vorkink, Keith P, 2003. "Efficient Estimation of Conditional Asset-Pricing Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(2), pages 269-283, April.
    2. Alessandro Manzotti & Adolfo Quiroz, 2001. "Spherical harmonics in quadratic forms for testing multivariate normality," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 87-104, June.
    3. L. Baringhaus & N. Henze, 1988. "A consistent test for multivariate normality based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 339-348, December.
    4. Schott, James R., 2002. "Testing for elliptical symmetry in covariance-matrix-based analyses," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 395-404, December.
    5. Zhu, Li-Xing & Neuhaus, Georg, 2003. "Conditional tests for elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 284-298, February.
    6. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.
    7. Romeu, J. L. & Ozturk, A., 1993. "A Comparative Study of Goodness-of-Fit Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 309-334, August.
    8. Manzotti, A. & Pérez, Francisco J. & Quiroz, Adolfo J., 2002. "A Statistic for Testing the Null Hypothesis of Elliptical Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 274-285, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batsidis, Apostolos & Zografos, Konstantinos, 2013. "A necessary test of fit of specific elliptical distributions based on an estimator of Song’s measure," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 91-105.
    2. Sakhanenko, Lyudmila, 2008. "Testing for ellipsoidal symmetry: A comparison study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 565-581, December.
    3. Francq, C. & Jiménez-Gamero, M.D. & Meintanis, S.G., 2017. "Tests for conditional ellipticity in multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 196(2), pages 305-319.
    4. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions. III," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 24(4), pages 100-130.
    5. Mark Flood & George Korenko, 2013. "Systematic Scenario Selection," Working Papers 13-02, Office of Financial Research, US Department of the Treasury.
    6. Boente, Graciela & Salibián Barrera, Matías & Tyler, David E., 2014. "A characterization of elliptical distributions and some optimality properties of principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 254-264.
    7. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:2:p:256-281. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.