IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-295909.html
   My bibliography  Save this paper

Optimal tests for elliptical symmetry: specified and unspecified location

Author

Listed:
  • Sladana Babic
  • Laetitia Gelbgras
  • Marc Hallin
  • Christophe Ley

Abstract

Although the assumption of elliptical symmetry is quite common in multivariate analysis and widespread in a number of applications, the problem of testing the null hypothesis of ellipticity so far has not been addressed in a fully satisfactory way. Most of the literature in the area indeed addresses the null hypothesis of elliptical symmetry with specified location and actually addresses location rather than non-elliptical alternatives. In thi spaper, we are proposing new classes of testing procedures,both for specified and unspecified location. The backbone of our construction is Le Cam’s asymptotic theory of statistical experiments, and optimality is to be understood locally and asymptotically within the family of generalized skew-elliptical distributions. The tests we are proposing are meeting all the desired properties of a “good” test of elliptical symmetry:they have a simple asymptotic distribution under the entire null hypothesis of elliptical symmetry with unspecified radial density and shape parameter; they are affine-invariant, computationally fast, intuitively understandable, and not too demanding in terms of moments. While achieving optimality against generalized skew-elliptical alternatives, they remain quite powerful under a much broader class of non-elliptical distributions and significantly outperform the available competitors

Suggested Citation

  • Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/295909
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/295909/3/2019-26-BABIC_GELDGRAS_HALLIN_LEY-optimal.pdf
    File Function: Full text for the whole work, or for a work part
    Download Restriction: no

    More about this item

    Keywords

    Elliptical Symmetry; Local Asymptotic normality; Maximin tests; Multivariate skewness; semiparametric inference; skew-elliptical densities;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/295909. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels). General contact details of provider: http://edirc.repec.org/data/arulbbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.