IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Sinh-arcsinh distributions

Listed author(s):
  • M. C. Jones
  • Arthur Pewsey
Registered author(s):

    We introduce the sinh-arcsinh transformation and hence, by applying it to a generating distribution with no parameters other than location and scale, usually the normal, a new family of sinh-arcsinh distributions. This four-parameter family has symmetric and skewed members and allows for tailweights that are both heavier and lighter than those of the generating distribution. The central place of the normal distribution in this family affords likelihood ratio tests of normality that are superior to the state-of-the-art in normality testing because of the range of alternatives against which they are very powerful. Likelihood ratio tests of symmetry are also available and are very successful. Three-parameter symmetric and asymmetric subfamilies of the full family are also of interest. Heavy-tailed symmetric sinh-arcsinh distributions behave like Johnson S U distributions, while their light-tailed counterparts behave like sinh-normal distributions, the sinh-arcsinh family allowing a seamless transition between the two, via the normal, controlled by a single parameter. The sinh-arcsinh family is very tractable and many properties are explored. Likelihood inference is pursued, including an attractive reparameterization. Illustrative examples are given. A multivariate version is considered. Options and extensions are discussed. Copyright 2009, Oxford University Press.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Biometrika Trust in its journal Biometrika.

    Volume (Year): 96 (2009)
    Issue (Month): 4 ()
    Pages: 761-780

    in new window

    Handle: RePEc:oup:biomet:v:96:y:2009:i:4:p:761-780
    Contact details of provider: Postal:
    Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK

    Fax: 01865 267 985
    Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:96:y:2009:i:4:p:761-780. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.