IDEAS home Printed from https://ideas.repec.org/p/bno/worpap/2009_23.html
   My bibliography  Save this paper

Combining VAR and DSGE forecast densities

Author

Listed:
  • Ida Wolden Bache

    () (Norges Bank)

  • Anne Sofie Jore

    () (Norges Bank)

  • James Mitchell

    (NIESR)

  • Shaun P. Vahey

    (Melbourne Business School)

Abstract

A popular macroeconomic forecasting strategy takes combinations across many models to hedge against instabilities of unknown timing; see (among others) Stock and Watson (2004), Clark and McCracken (2010), and Jore et al. (2010). Existing studies of this forecasting strategy exclude Dynamic Stochastic General Equilibrium (DSGE) models, despite the widespread use of these models by monetary policymakers. In this paper, we combine inflation forecast densities utilizing an ensemble system comprising many Vector Autoregressions (VARs), and a policymaking DSGE model. The DSGE receives substantial weight (for short horizons) provided the VAR components exclude structural breaks. In this case, the inflation forecast densities exhibit calibration failure. Allowing for structural breaks in the VARs reduces the weight on the DSGE considerably, and produces well-calibrated forecast densities for inflation.

Suggested Citation

  • Ida Wolden Bache & Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2009. "Combining VAR and DSGE forecast densities," Working Paper 2009/23, Norges Bank.
  • Handle: RePEc:bno:worpap:2009_23
    as

    Download full text from publisher

    File URL: http://www.norges-bank.no/en/Published/Papers/Working-Papers/2009/WP-200923/
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
    2. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    3. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
    4. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," Review of Economic Studies, Oxford University Press, vol. 74(4), pages 1059-1087.
    5. Jana Eklund & Sune Karlsson, 2007. "Forecast Combination and Model Averaging Using Predictive Measures," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 329-363.
    6. Garratt, Anthony & Koop, Gary & Mise, Emi & Vahey, Shaun P., 2009. "Real-Time Prediction With U.K. Monetary Aggregates in the Presence of Model Uncertainty," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 480-491.
    7. Schorfheide, Frank & Sill, Keith & Kryshko, Maxym, 2010. "DSGE model-based forecasting of non-modelled variables," International Journal of Forecasting, Elsevier, vol. 26(2), pages 348-373, April.
    8. Anthony Garratt & James Mitchell & Shaun P. Vahey, 2009. "Measuring Output Gap Uncertainty," Birkbeck Working Papers in Economics and Finance 0909, Birkbeck, Department of Economics, Mathematics & Statistics.
    9. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    10. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    11. Kenneth F. Wallis, 2005. "Combining Density and Interval Forecasts: A Modest Proposal," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 983-994, December.
    12. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    13. repec:nsr:niesrd:337 is not listed on IDEAS
    14. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    15. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    16. Peter A. Morris, 1974. "Decision Analysis Expert Use," Management Science, INFORMS, vol. 20(9), pages 1233-1241, May.
    17. Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
    18. Anthony Garratt & Gary Koop & ShaunP. Vahey, 2008. "Forecasting Substantial Data Revisions in the Presence of Model Uncertainty," Economic Journal, Royal Economic Society, vol. 118(530), pages 1128-1144, July.
    19. Wallis, Kenneth F., 2003. "Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts," International Journal of Forecasting, Elsevier, vol. 19(2), pages 165-175.
    20. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    21. Robert L. Winkler, 1981. "Combining Probability Distributions from Dependent Information Sources," Management Science, INFORMS, vol. 27(4), pages 479-488, April.
    22. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    23. Todd E. Clark, 2009. "Real-time density forecasts from VARs with stochastic volatility," Research Working Paper RWP 09-08, Federal Reserve Bank of Kansas City.
    24. Adolfson, Malin & Laséen, Stefan & Lindé, Jesper & Villani, Mattias, 2008. "Evaluating an estimated new Keynesian small open economy model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(8), pages 2690-2721, August.
    25. Granger Clive W.J., 2008. "Non-Linear Models: Where Do We Go Next - Time Varying Parameter Models?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-11, September.
    26. Ida Wolden Bache & Leif Brubakk & Junior Maih, 2010. "Simple rules versus optimal policy: what fits?," Working Paper 2010/03, Norges Bank.
    27. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, Elsevier.
    28. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    29. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
    30. Dr. James Mitchell, 2009. "Measuring Output Gap Uncertainty," National Institute of Economic and Social Research (NIESR) Discussion Papers 342, National Institute of Economic and Social Research.
    31. Cogley, Timothy, 2002. "A Simple Adaptive Measure of Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(1), pages 94-113, February.
    32. Michael P. Clements, 2004. "Evaluating the Bank of England Density Forecasts of Inflation," Economic Journal, Royal Economic Society, vol. 114(498), pages 844-866, October.
    33. Peter A. Morris, 1977. "Combining Expert Judgments: A Bayesian Approach," Management Science, INFORMS, vol. 23(7), pages 679-693, March.
    34. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. DSGE models and forecasting
      by Christian Zimmermann in NEP-DGE blog on 2009-12-21 06:35:25

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, Elsevier.
    2. Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017. "Real-time forecast evaluation of DSGE models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 201(2), pages 322-332.
    3. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2017. "Euromind‐ D : A Density Estimate of Monthly Gross Domestic Product for the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 683-703, April.
    4. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
    5. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    6. repec:eee:ecmode:v:68:y:2018:i:c:p:190-204 is not listed on IDEAS
    7. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    8. Maik H. Wolters, 2015. "Evaluating Point and Density Forecasts of DSGE Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 74-96, January.
    9. Wolters, Maik H., 2011. "Forecasting under Model Uncertainty," Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48723, Verein für Socialpolitik / German Economic Association.
    10. Ida Wolden Bache & James Mitchell & Francesco Ravazzolo & Shaun P. Vahey, 2009. "Macro modelling with many models," Working Paper 2009/15, Norges Bank.
    11. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    12. Periklis Gogas & Theophilos Papadimitriou & Elvira Takli, 2013. "Comparison of simple sum and Divisia monetary aggregates in GDP forecasting: a support vector machines approach," Economics Bulletin, AccessEcon, vol. 33(2), pages 1101-1115.
    13. Pauwels, Laurent L. & Vasnev, Andrey L., 2016. "A note on the estimation of optimal weights for density forecast combinations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 391-397.
    14. Valeriu Nalban, 2015. "Do Bayesian Vector Autoregressive models improve density forecasting accuracy? The case of the Czech Republic and Romania," International Journal of Economic Sciences, International Institute of Social and Economic Sciences, vol. 4(1), pages 60-74, March.
    15. Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.
    16. repec:eee:ecofin:v:42:y:2017:i:c:p:393-420 is not listed on IDEAS
    17. Jakub Ryšánek, 2010. "Combining VAR Forecast Densities Using Fast Fourier Transform," Acta Oeconomica Pragensia, University of Economics, Prague, vol. 2010(5), pages 72-88.

    More about this item

    Keywords

    Ensemble modeling; Forecast densities; Forecast evaluation; VAR models; DSGE models;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bno:worpap:2009_23. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nbgovno.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.