IDEAS home Printed from https://ideas.repec.org/p/col/000094/010973.html
   My bibliography  Save this paper

Combinación de brechas del producto colombiano

Author

Listed:
  • Paulo Mauricio Sánchez Beltrán

    ()

  • Luis Fernando Melo Velandia

    ()

Abstract

Este documento combina estimaciones de ocho metodologías de la brecha del producto colombiano para el período comprendido entre el primer trimestre de 1994 y el tercer trimestre de 2012. A partir de modelos VAR que incluyen las diferentes brechas y la inflación se construyen las densidades combinadas de pronósticos de la brecha mediante el uso de tres esquemas de ponderación: logarítmicos, basados en puntuaciones de rango de probabilidad continuo (CRPS) y basados en el error cuadrático medio (MSE). Los resultados sugieren que las densidades combinadas bajo estos tres esquemas con horizontes de pronóstico de uno, dos, tres y cuatro trimestres adelante están bien especificadas. Adicionalmente, las puntuaciones logarítmicas calculadas sobre estas densidades muestran que las metodologías basadas en ponderadores logarítmicos para horizontes de pronóstico de dos y tres trimestres tienen significativamente un mejor desempeño que las calculadas por los ponderadores CRPS y MSE.

Suggested Citation

  • Paulo Mauricio Sánchez Beltrán & Luis Fernando Melo Velandia, 2013. "Combinación de brechas del producto colombiano," BORRADORES DE ECONOMIA 010973, BANCO DE LA REPÚBLICA.
  • Handle: RePEc:col:000094:010973
    as

    Download full text from publisher

    File URL: http://www.banrep.gov.co/sites/default/files/publicaciones/archivos/be_775.pdf?__utma=1.1731840165.1386797159.1397161236.1398087920.16&__utmb=1.12.10.1398087920&__utmc=1&__utmx=-&__utmz=1.1398087920.16.12.utmcsr=google|utmccn=(organic)|utmcmd=organic|utmctr=(not%20provided)&__utmv=-&__utmk=111424004
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    2. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
    3. Eliana González Molano & Luis Fernando Melo Velnadia & Anderson Grajales Olarte, 2007. "Pronósticos directos de la inflación colombiana," BORRADORES DE ECONOMIA 004247, BANCO DE LA REPÚBLICA.
    4. Harvey, Andrew & Proietti, Tommaso (ed.), 2005. "Readings in Unobserved Components Models," OUP Catalogue, Oxford University Press, number 9780199278695.
    5. Anthony Garratt & James Mitchell & Shaun P. Vahey, 2009. "Measuring Output Gap Uncertainty," Birkbeck Working Papers in Economics and Finance 0909, Birkbeck, Department of Economics, Mathematics & Statistics.
    6. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    7. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    8. Chris McDonald & Leif Anders Thorsrud, 2011. "Evaluating density forecasts: model combination strategies versus the RBNZ," Reserve Bank of New Zealand Discussion Paper Series DP2011/03, Reserve Bank of New Zealand.
    9. Andrés González & Segio Ocampo & Julián Pérez & Diego Rodríguez, 2013. "Output Gap and Neutral Interest Measures of Colombia," Monetaria, Centro de Estudios Monetarios Latinoamericanos, CEMLA, vol. 0(2), pages 231-286, July-Dece.
    10. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    11. Bjørnland, Hilde C. & Gerdrup, Karsten & Jore, Anne Sofie & Smith, Christie & Thorsrud, Leif Anders, 2011. "Weights and pools for a Norwegian density combination," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 61-76, January.
    12. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    13. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR ‘Fan’ Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
    14. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    15. Norberto Rodríguez N. & José Luis Torres T. & Andrés Velasco M., 2006. "La estimación de un indicador de brecha del producto a partir de encuestas y datos reales," Borradores de Economia 392, Banco de la Republica de Colombia.
    16. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ecosys:v:41:y:2017:i:3:p:389-407 is not listed on IDEAS
    2. Jorge Mario Uribe & Inés María Ulloa & Johanna Perea, 2015. "Reference financial cycle in Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 83, pages 33-62, Julio - D.
    3. Amador-Torres, J. Sebastián, 2017. "Finance-neutral potential output: An evaluation in an emerging market monetary policy context," Economic Systems, Elsevier, vol. 41(3), pages 389-407.

    More about this item

    Keywords

    Combinación de densidades de pronóstico; brecha del producto; pronósticos directos; modelos VAR.;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000094:010973. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Clorith Angélica Bahos Olivera). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.