Density forecasts with MIDAS models
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017. "Density Forecasts With Midas Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Papers No 3/2014, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
- Rossi, Barbara & Sekhposyan, Tatevik, 2019.
"Alternative tests for correct specification of conditional predictive densities,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
- Barbara Rossi & Tatevik Sekhposyan, 2014. "Alternative tests for correct specification of conditional predictive densities," Economics Working Papers 1416, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2017.
- Tatevik Sekhposyan & Barbara Rossi, 2015. "Alternative Tests for Correct Specification of Conditional Predictive Densities," Working Papers 758, Barcelona School of Economics.
- Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
- Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2024. "Nowcasting Norwegian household consumption with debit card transaction data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1220-1244, November.
- Barbara Rossi, 2021.
"Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them,"
Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2020. "Nowcasting Norwegian household consumption with debit card transaction data," Working Paper 2020/17, Norges Bank.
- Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
- Knotek, Edward S. & Zaman, Saeed, 2023.
"Real-time density nowcasts of US inflation: A model combination approach,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
- Edward Knotek & Saeed Zaman, 2020. "Real-time density nowcasts of US inflation: a model-combination approach," Working Papers 2015, University of Strathclyde Business School, Department of Economics.
- Edward S. Knotek & Saeed Zaman, 2020. "Real-Time Density Nowcasts of US Inflation: A Model-Combination Approach," Working Papers 20-31, Federal Reserve Bank of Cleveland.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022.
"Nowcasting tail risk to economic activity at a weekly frequency,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 843-866, August.
- Marcellino, Massimiliano & Clark, Todd & Carriero, Andrea, 2021. "Nowcasting Tail Risk to Economic Activity at a Weekly Frequency," CEPR Discussion Papers 16496, C.E.P.R. Discussion Papers.
- Qiu, Yue, 2020. "Forecasting the Consumer Confidence Index with tree-based MIDAS regressions," Economic Modelling, Elsevier, vol. 91(C), pages 247-256.
- Gelain, Paolo & Iskrev, Nikolay & J. Lansing, Kevin & Mendicino, Caterina, 2019. "Inflation dynamics and adaptive expectations in an estimated DSGE model," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 258-277.
- Efrem Castelnuovo & Lorenzo Mori, 2025.
"Uncertainty, Skewness, and the Business Cycle Through the MIDAS Lens,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 89-107, January.
- Efrem Castelnuovo & Lorenzo Mori, 2022. "Uncertainty, Skewness and the Business Cycle - Through the MIDAS Lens," CAMA Working Papers 2022-69, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Efrem Castelnuovo & Lorenzo Mori, 2022. "Uncertainty, Skewness, and the Business Cycle through the MIDAS Lens," CESifo Working Paper Series 10062, CESifo.
- Efrem Castelnuovo & Lorenzo Mori, 2022. "Uncertainty, Skewness, and the Business Cycle Through the MIDAS Lens," "Marco Fanno" Working Papers 0291, Dipartimento di Scienze Economiche "Marco Fanno".
- Siliverstovs, Boriss, 2017.
"Dissecting models' forecasting performance,"
Economic Modelling, Elsevier, vol. 67(C), pages 294-299.
- Boriss Siliverstovs, 2015. "Dissecting Models' Forecasting Performance," KOF Working papers 15-397, KOF Swiss Economic Institute, ETH Zurich.
- Barbara Rossi, 2018.
"Identifying and estimating the effects of unconventional monetary policy in the data: How to do It and what have we learned?,"
Economics Working Papers
1641, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2020.
- Barbara Rossi, 2019. "Identifying and Estimating the Effects of Unconventional Monetary Policy in the Data: How to Do It and What Have We Learned?," Working Papers 1081, Barcelona School of Economics.
- Laurent Ferrara & Clément Marsilli, 2019.
"Nowcasting global economic growth: A factor‐augmented mixed‐frequency approach,"
The World Economy, Wiley Blackwell, vol. 42(3), pages 846-875, March.
- Laurent Ferrara & Clément Marsilli, 2014. "Nowcasting global economic growth: A factor-augmented mixed-frequency approach," Working papers 515, Banque de France.
- Laurent Ferrara & Clément Marsilli, 2019. "Nowcasting global economic growth: A factor-augmented mixed-frequency approach," Post-Print hal-01636761, HAL.
- Jack Fosten & Daniel Gutknecht, 2021. "Horizon confidence sets," Empirical Economics, Springer, vol. 61(2), pages 667-692, August.
- Ghysels, Eric & Qian, Hang, 2019. "Estimating MIDAS regressions via OLS with polynomial parameter profiling," Econometrics and Statistics, Elsevier, vol. 9(C), pages 1-16.
- Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
More about this item
Keywords
; ; ;JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2014-08-02 (Econometrics)
- NEP-ETS-2014-08-02 (Econometric Time Series)
- NEP-FOR-2014-08-02 (Forecasting)
- NEP-MAC-2014-08-02 (Macroeconomics)
- NEP-ORE-2014-08-02 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bno:worpap:2014_10. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nbgovno.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/bno/worpap/2014_10.html