IDEAS home Printed from https://ideas.repec.org/f/pfo230.html
   My authors  Follow this author

Claudia Foroni

Personal Details

First Name:Claudia
Middle Name:
Last Name:Foroni
Suffix:
RePEc Short-ID:pfo230
[This author has chosen not to make the email address public]

Affiliation

Deutsche Bundesbank

Frankfurt, Germany
http://www.bundesbank.de/

: 0 69 / 95 66 - 0
0 69 / 95 66 30 77
Postfach 10 06 02, 60006 Frankfurt
RePEc:edi:dbbgvde (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2018. "Mixed frequency models with MA components," Discussion Papers 02/2018, Deutsche Bundesbank.
  2. Claudia Foroni & Pierre Guérin & Massimiliano Marcellino, 2017. "Explaining the Time-varying Effects Of Oil Market Shocks On U.S. Stock Returns," Working Papers 597, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  3. Claudia Foroni & Francesco Ravazzolo & Barbara Sadaba, 2017. "Assessing the Predictive Ability of Sovereign Default Risk on Exchange Rate Returns," Staff Working Papers 17-19, Bank of Canada.
  4. Valentina Aprigliano & Claudia Foroni & Massimiliano Marcellino & Gianluigi Mazzi & Fabrizio Venditti, 2016. "A daily indicator of economic growth for the euro area," Working Papers 570, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  5. Roberto Casarin & Claudia Foroni & Massimiliano Marcellino & Francesco Ravazzolo, 2016. "Uncertainty Through the Lenses of A Mixed-Frequency Bayesian Panel Markov Switching Model," Working Papers 585, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  6. Claudia Foroni & Pierre Guérin & Massimiliano Marcellino, 2015. "Using low frequency information for predicting high frequency variables," Working Paper 2015/13, Norges Bank.
  7. Claudia Foroni & Francesco Furlanetto & Antoine Lepetit, 2015. "Labor Supply Factors and Economic Fluctuations," Working Paper 2015/07, Norges Bank.
  8. Claudia Foroni & Francesco Ravazzolo & Pinho J. Ribeiro, 2015. "Forecasting commodity currencies: the role of fundamentals with short-lived predictive content," Working Paper 2015/14, Norges Bank.
  9. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Papers No 3/2014, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  10. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.
  11. Claudia Foroni & Massimiliano Marcellino, 2014. "Mixed frequency structural VARs," Working Paper 2014/01, Norges Bank.
  12. Claudia Foroni & Massimiliano Marcellino, 2013. "Mixed frequency structural models: estimation, and policy analysis," Working Paper 2013/15, Norges Bank.
  13. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
  14. Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.
  15. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.

Articles

  1. Foroni, Claudia & Ravazzolo, Francesco & Sadaba, Barbara, 2018. "Assessing the predictive ability of sovereign default risk on exchange rate returns," Journal of International Money and Finance, Elsevier, vol. 81(C), pages 242-264.
  2. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017. "Density Forecasts With Midas Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
  3. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2017. "Explaining the time-varying effects of oil market shocks on US stock returns," Economics Letters, Elsevier, vol. 155(C), pages 84-88.
  4. Valentina Aprigliano & Claudia Foroni & Massimiliano Marcellino & Gianluigi Mazzi & Fabrizio Venditti, 2017. "A daily indicator of economic growth for the euro area," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 7(1/2), pages 43-63.
  5. Claudia Foroni & Massimiliano Marcellino, 2016. "Mixed frequency structural vector auto-regressive models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 403-425, February.
  6. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
  7. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
  8. Claudia Foroni & Massimiliano Marcellino, 2014. "Mixed‐Frequency Structural Models: Identification, Estimation, And Policy Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1118-1144, November.
  9. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Valentina Aprigliano & Claudia Foroni & Massimiliano Marcellino & Gianluigi Mazzi & Fabrizio Venditti, 2016. "A daily indicator of economic growth for the euro area," Working Papers 570, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.

    Cited by:

    1. Stefan Neuwirth, 2017. "Time-varying mixed frequency forecasting: A real-time experiment," KOF Working papers 17-430, KOF Swiss Economic Institute, ETH Zurich.

  2. Claudia Foroni & Pierre Guérin & Massimiliano Marcellino, 2015. "Using low frequency information for predicting high frequency variables," Working Paper 2015/13, Norges Bank.

    Cited by:

    1. Tomás del Barrio Castro & Alain Hecq, 2016. "Testing for Deterministic Seasonality in Mixed-Frequency VARs," DEA Working Papers 76, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    2. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2017. "Markov-Switching Three-Pass Regression Filter," Staff Working Papers 17-13, Bank of Canada.
    3. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.

  3. Claudia Foroni & Francesco Furlanetto & Antoine Lepetit, 2015. "Labor Supply Factors and Economic Fluctuations," Working Paper 2015/07, Norges Bank.

    Cited by:

    1. Francesco Furlanetto & Ørjan Robstad, 2017. "Immigration and the macroeconomy: some new empirical evidence," Working Papers 1716, Banco de España;Working Papers Homepage.
    2. Danilo Leiva-Leon, 2017. "Monitoring the Spanish Economy through the Lenses of Structural Bayesian VARs," Occasional Papers 1706, Banco de España;Occasional Papers Homepage.
    3. Jordan Roulleau-Pasdeloup, 2016. "The Government Spending Multiplier in a Deep Recession," Cahiers de Recherches Economiques du Département d'Econométrie et d'Economie politique (DEEP) 16.22, Université de Lausanne, Faculté des HEC, DEEP.
    4. Klimenko, Nataliya & Pfeil, Sebastian & Rochet, Jean-Charles, 2017. "A simple macroeconomic model with extreme financial frictions," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 92-102.
    5. Furlanetto, Francesco & Groshenny, Nicolas, 2016. "Reallocation shocks, persistence and nominal rigidities," Economics Letters, Elsevier, vol. 141(C), pages 151-155.
    6. Thorsten Drautzburg & Jesús Fernández-Villaverde & Pablo Guerrón-Quintana, 2017. "Political Distribution Risk and Aggregate Fluctuations," NBER Working Papers 23647, National Bureau of Economic Research, Inc.
    7. Gehrke, Britta & Yao, Fang, 2017. "Are supply shocks important for real exchange rates? A fresh view from the frequency-domain," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 99-114.

  4. Claudia Foroni & Francesco Ravazzolo & Pinho J. Ribeiro, 2015. "Forecasting commodity currencies: the role of fundamentals with short-lived predictive content," Working Paper 2015/14, Norges Bank.

    Cited by:

    1. Casarin, Roberto & Foroni, Claudia & Marcellino, Massimiliano & Ravazzolo, Francesco, 2017. "Uncertainty Through the Lenses of A Mixed-Frequency Bayesian Panel Markov Switching Model," CEPR Discussion Papers 12339, C.E.P.R. Discussion Papers.

  5. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Papers No 3/2014, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.

    Cited by:

    1. Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
    2. Laurent Ferrara & Clément Marsilli, 2017. "Nowcasting global economic growth: A factor-augmented mixed-frequency approach," Post-Print hal-01636761, HAL.
    3. Boriss Siliverstovs, 2015. "Dissecting Models' Forecasting Performance," KOF Working papers 15-397, KOF Swiss Economic Institute, ETH Zurich.

  6. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.

    Cited by:

    1. McCracken, Michael W. & Owyang, Michael T. & Sekhposyan, Tatevik, 2015. "Real-Time Forecasting with a Large, Mixed Frequency, Bayesian VAR," Working Papers 2015-30, Federal Reserve Bank of St. Louis.
    2. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
    3. Blasques, F. & Koopman, S.J. & Mallee, M. & Zhang, Z., 2016. "Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 405-417.

  7. Claudia Foroni & Massimiliano Marcellino, 2014. "Mixed frequency structural VARs," Working Paper 2014/01, Norges Bank.

    Cited by:

    1. Marcellino, Massimiliano & Sivec, Vasja, 2016. "Monetary, fiscal and oil shocks: Evidence based on mixed frequency structural FAVARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 335-348.
    2. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Paper 1227, Federal Reserve Bank of Cleveland.
    3. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    4. Laurent Ferrara & Pierre Guérin, 2016. "What Are the Macroeconomic Effects of High-Frequency Uncertainty Shocks," Staff Working Papers 16-25, Bank of Canada.
    5. Skrobotov, Anton & Turuntseva, Marina, 2015. "Theoretical Foundations of SVAR Modeling," Published Papers mak8, Russian Presidential Academy of National Economy and Public Administration.
    6. Bent Jesper Christensen & Olaf Posch & Michel van der Wel, 2014. "Estimating Dynamic Equilibrium Models Using Mixed Frequency Macro and Financial Data," CESifo Working Paper Series 5030, CESifo Group Munich.

  8. Claudia Foroni & Massimiliano Marcellino, 2013. "Mixed frequency structural models: estimation, and policy analysis," Working Paper 2013/15, Norges Bank.

    Cited by:

    1. Bluwstein, Kristina & Canova, Fabio, 2015. "Beggar-thy-neighbor? The international effects of ECB unconventional monetary policy measures," CEPR Discussion Papers 10856, C.E.P.R. Discussion Papers.
    2. Giannone, Domenico & Monti, Francesca & Reichlin, Lucrezia, 2014. "Exploiting the monthly data-flow in structural forecasting," LSE Research Online Documents on Economics 57998, London School of Economics and Political Science, LSE Library.
    3. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.

  9. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.

    Cited by:

    1. Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
    2. Antonello D’Agostino & Jacopo Cimadomo, 2015. "Combining time-variation and mixed-frequencies: an analysis of government spending multipliers in Italy," Working Papers 7, European Stability Mechanism.
    3. Jung, Alexander, 2017. "Forecasting broad money velocity," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 421-432.
    4. Staehr, Karsten & Vermeulen, Robert, 2016. "How competitiveness shocks affect macroeconomic performance across euro area countries," Working Paper Series 1940, European Central Bank.
    5. Mariano, Roberto S. & Ozmucur, Suleyman, 2015. "High-Mixed-Frequency Dynamic Latent Factor Forecasting Models for GDP in the Philippines/Modelos de factores dinámicos latentes con datos mixtos de alta frecuencia aplicados a la predicción del PIB en," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 33, pages 451-462, Mayo.
    6. Löchel, H. & Packham, N. & Walisch, F., 2016. "Determinants of the onshore and offshore Chinese government yield curves," Pacific-Basin Finance Journal, Elsevier, vol. 36(C), pages 77-93.
    7. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
    8. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    9. Deistler, Manfred & Koelbl, Lukas & Anderson, Brian D.O., 2017. "Non-identifiability of VMA and VARMA systems in the mixed frequency case," Econometrics and Statistics, Elsevier, vol. 4(C), pages 31-38.
    10. Millimet, Daniel L. & McDonough, Ian K., 2013. "Dynamic Panel Data Models with Irregular Spacing: With Applications to Early Childhood Development," IZA Discussion Papers 7359, Institute for the Study of Labor (IZA).
    11. Marek Rusnak, 2013. "Nowcasting Czech GDP in Real Time," Working Papers 2013/06, Czech National Bank, Research Department.
    12. Michal Franta & David Havrlant & Marek Rusnak, 2014. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Working Papers 2014/08, Czech National Bank, Research Department.
    13. Smith Paul, 2016. "Nowcasting UK GDP during the depression," Working Papers 1606, University of Strathclyde Business School, Department of Economics.
    14. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    15. Červená, Marianna & Schneider, Martin, 2014. "Short-term forecasting of GDP with a DSGE model augmented by monthly indicators," International Journal of Forecasting, Elsevier, vol. 30(3), pages 498-516.
    16. Vegard Høghaug Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Papers No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    17. Maas, Daniel & Mayer, Eric & Rüth, Sebastian, 2015. "Current account dynamics and the housing boom and bust cycle in Spain," W.E.P. - Würzburg Economic Papers 94, University of Würzburg, Chair for Monetary Policy and International Economics.
    18. Leif Anders Thorsrud, 2016. "Words are the new numbers: A newsy coincident index of business cycles," Working Papers No 4/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    19. Freitag L., 2014. "Default probabilities, CDS premiums and downgrades : A probit-MIDAS analysis," Research Memorandum 038, Maastricht University, Graduate School of Business and Economics (GSBE).
    20. Allan, Grant & Koop, Gary & McIntyre, Stuart & Smith, Paul, 2014. "Nowcasting Scottish GDP Growth," SIRE Discussion Papers 2015-08, Scottish Institute for Research in Economics (SIRE).
    21. Hale, Galina & Lopez, Jose A., 2017. "Monitoring Banking System Fragility with Big Data," Working Paper Series 2018-1, Federal Reserve Bank of San Francisco.
    22. Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
    23. Laura D'Amato & Lorena Garegnani & Emilio Blanco, 2016. "GDP Nowcasting: Assessing the Cyclical Conditions of the Argentine Economy," Ensayos Económicos, Central Bank of Argentina, Economic Research Department, vol. 1(74), pages 7-26, December.
    24. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.
    25. Laura D´Amato & Lorena Garegnani & Emilio Blanco, 2015. "GDP Nowcasting: Assessing business cycle conditions in Argentina," BCRA Working Paper Series 201569, Central Bank of Argentina, Economic Research Department.
    26. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, Elsevier.
    27. Eugen Scarlat, 2016. "Connectivity - Based Clustering of GDP Time Series," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 23-38, March.
    28. Trujillo-Barrera, Andres & Pennings, Joost M.E., 2013. "Energy and Food Commodity Prices Linkage: An Examination with Mixed-Frequency Data," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150465, Agricultural and Applied Economics Association.

  10. Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.

    Cited by:

    1. Cláudia Duarte, 2015. "Covariate-augmented unit root tests with mixed-frequency data," Working Papers w201507, Banco de Portugal, Economics and Research Department.
    2. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    3. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.
    4. Mariano, Roberto S. & Ozmucur, Suleyman, 2015. "High-Mixed-Frequency Dynamic Latent Factor Forecasting Models for GDP in the Philippines/Modelos de factores dinámicos latentes con datos mixtos de alta frecuencia aplicados a la predicción del PIB en," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 33, pages 451-462, Mayo.
    5. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2016. "Short-Term GDP Forecasting With a Mixed-Frequency Dynamic Factor Model With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 118-127, January.
    6. Kajal Lahiri & George Monokroussos, 2011. "Nowcasting US GDP: The role of ISM Business Surveys," Discussion Papers 11-01, University at Albany, SUNY, Department of Economics.
    7. Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
    8. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.
    9. Claudia Foroni & Massimiliano Marcellino, 2014. "Mixed frequency structural VARs," Working Paper 2014/01, Norges Bank.
    10. C. Marsilli, 2014. "Variable Selection in Predictive MIDAS Models," Working papers 520, Banque de France.

  11. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.

    Cited by:

    1. Winkelried, Diego, 2012. "Predicting quarterly aggregates with monthly indicators," Working Papers 2012-023, Banco Central de Reserva del Perú.
    2. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    3. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Paper 1227, Federal Reserve Bank of Cleveland.
    4. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    5. Götz T.B. & Hecq A.W., 2013. "Nowcasting causality in mixed frequency vector autoregressive models," Research Memorandum 050, Maastricht University, Graduate School of Business and Economics (GSBE).
    6. Götz T.B. & Hecq A.W. & Urbain J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
    7. Marie Bessec & Othman Bouabdallah, 2015. "Forecasting GDP over the Business Cycle in a Multi-Frequency and Data-Rich Environment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(3), pages 360-384, June.
    8. Götz Thomas & Hecq Alain & Urbain Jean-Pierre, 2012. "Forecasting Mixed Frequency Time Series with ECM-MIDAS Models," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    9. Mariano, Roberto S. & Ozmucur, Suleyman, 2015. "High-Mixed-Frequency Dynamic Latent Factor Forecasting Models for GDP in the Philippines/Modelos de factores dinámicos latentes con datos mixtos de alta frecuencia aplicados a la predicción del PIB en," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 33, pages 451-462, Mayo.
    10. Maxime Leboeuf & Louis Morel, 2014. "Forecasting Short-Term Real GDP Growth in the Euro Area and Japan Using Unrestricted MIDAS Regressions," Discussion Papers 14-3, Bank of Canada.
    11. Elena Andreou & Andros Kourtellos, 2015. "The State and the Future of Cyprus Macroeconomic Forecasting," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 9(1), pages 73-90, June.
    12. Fady Barsoum & Sandra Stankiewicz, 2013. "Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes," Working Paper Series of the Department of Economics, University of Konstanz 2013-10, Department of Economics, University of Konstanz.
    13. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
    14. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
    15. Michal Franta & David Havrlant & Marek Rusnak, 2014. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Working Papers 2014/08, Czech National Bank, Research Department.
    16. Davide Pettenuzzo & Rossen Valkanov & Allan Timmermann, 2014. "A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics," Working Papers 76, Brandeis University, Department of Economics and International Businesss School.
    17. Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
    18. Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
    19. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2013. "Testing for Granger Causality with Mixed Frequency Data," CEPR Discussion Papers 9655, C.E.P.R. Discussion Papers.
    20. Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
    21. Freitag L., 2014. "Default probabilities, CDS premiums and downgrades : A probit-MIDAS analysis," Research Memorandum 038, Maastricht University, Graduate School of Business and Economics (GSBE).
    22. Schumacher, Christian, 2014. "MIDAS regressions with time-varying parameters: An application to corporate bond spreads and GDP in the Euro area," Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100289, Verein für Socialpolitik / German Economic Association.
    23. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.
    24. Francisco Blasques & Siem Jan Koopman & Max Mallee, 2014. "Low Frequency and Weighted Likelihood Solutions for Mixed Frequency Dynamic Factor Models," Tinbergen Institute Discussion Papers 14-105/III, Tinbergen Institute.
    25. Claudia Foroni & Massimiliano Marcellino, 2014. "Mixed frequency structural VARs," Working Paper 2014/01, Norges Bank.
    26. Dirk Drechsel & Stefan Neuwirth, 2016. "Taming volatile high frequency data with long lag structure: An optimal filtering approach for forecasting," KOF Working papers 16-407, KOF Swiss Economic Institute, ETH Zurich.
    27. C. Marsilli, 2014. "Variable Selection in Predictive MIDAS Models," Working papers 520, Banque de France.
    28. Trujillo-Barrera, Andres & Pennings, Joost M.E., 2013. "Energy and Food Commodity Prices Linkage: An Examination with Mixed-Frequency Data," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150465, Agricultural and Applied Economics Association.

Articles

  1. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017. "Density Forecasts With Midas Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
    See citations under working paper version above.
  2. Valentina Aprigliano & Claudia Foroni & Massimiliano Marcellino & Gianluigi Mazzi & Fabrizio Venditti, 2017. "A daily indicator of economic growth for the euro area," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 7(1/2), pages 43-63.
    See citations under working paper version above.
  3. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.

    Cited by:

    1. Harchaoui, Tarek M. & Janssen, Robert V., 2018. "How can big data enhance the timeliness of official statistics?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 225-234.
    2. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    3. Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
    4. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    5. A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
    6. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    7. Jung, Alexander, 2017. "Forecasting broad money velocity," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 421-432.
    8. an de Meulen, Philipp, 2015. "Das RWI-Kurzfristprognosemodell," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 66(2), pages 25-46.
    9. Ball, Ryan & Ghysels, Eric & Zhou, Huan, 2014. "Can we Automate Earnings Forecasts and Beat Analysts?," CEPR Discussion Papers 10186, C.E.P.R. Discussion Papers.
    10. Casarin, Roberto & Foroni, Claudia & Marcellino, Massimiliano & Ravazzolo, Francesco, 2017. "Uncertainty Through the Lenses of A Mixed-Frequency Bayesian Panel Markov Switching Model," CEPR Discussion Papers 12339, C.E.P.R. Discussion Papers.
    11. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
    12. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    13. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
    14. Martin Feldkircher & Florian Huber & Josef Schreiner & Marcel Tirpák & Peter Tóth & Julia Wörz, 2015. "Bridging the information gap: small-scale nowcasting models of GDP growth for selected CESEE countries," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 2, pages 56-75.
    15. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    16. Michal Franta & David Havrlant & Marek Rusnak, 2014. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Working Papers 2014/08, Czech National Bank, Research Department.
    17. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    18. Frédérique Bec & Matteo Mogliani, 2013. "Nowcasting French GDP in Real-Time from Survey Opinions : Information or Forecast Combinations ?," Working Papers 2013-21, Center for Research in Economics and Statistics.
    19. Davide Pettenuzzo & Rossen Valkanov & Allan Timmermann, 2014. "A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics," Working Papers 76, Brandeis University, Department of Economics and International Businesss School.
    20. J. Isaac Miller & Xi Wang, 2016. "Implementing Residual-Based KPSS Tests for Cointegration with Data Subject to Temporal Aggregation and Mixed Sampling Frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 810-824, November.
    21. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2013. "Testing for Granger Causality with Mixed Frequency Data," CEPR Discussion Papers 9655, C.E.P.R. Discussion Papers.
    22. Allan, Grant & Koop, Gary & McIntyre, Stuart & Smith, Paul, 2014. "Nowcasting Scottish GDP Growth," SIRE Discussion Papers 2015-08, Scottish Institute for Research in Economics (SIRE).
    23. Valentina Aprigliano & Guerino Ardizzi & Libero Monteforte, 2017. "Using the payment system data to forecast the Italian GDP," Temi di discussione (Economic working papers) 1098, Bank of Italy, Economic Research and International Relations Area.
    24. Boriss Siliverstovs, 2017. "Short-term forecasting with mixed-frequency data: a MIDASSO approach," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
    25. Stefan Neuwirth, 2017. "Time-varying mixed frequency forecasting: A real-time experiment," KOF Working papers 17-430, KOF Swiss Economic Institute, ETH Zurich.
    26. Gong, Yuting & Chen, Qiang & Liang, Jufang, 2018. "A mixed data sampling copula model for the return-liquidity dependence in stock index futures markets," Economic Modelling, Elsevier, vol. 68(C), pages 586-598.
    27. Martin Feldkircher & Florian Huber & Josef Schreiner & Julia Woerz & Marcel Tirpak & Peter Toth, 2015. "Small-scale nowcasting models of GDP for selected CESEE countries," Working and Discussion Papers WP 4/2015, Research Department, National Bank of Slovakia.
    28. Kitlinski, Tobias & an de Meulen, Philipp, 2015. "The role of targeted predictors for nowcasting GDP with bridge models: Application to the Euro area," Ruhr Economic Papers 559, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

  4. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
    See citations under working paper version above.
  5. Claudia Foroni & Massimiliano Marcellino, 2014. "Mixed‐Frequency Structural Models: Identification, Estimation, And Policy Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1118-1144, November.

    Cited by:

    1. Marcellino, Massimiliano & Sivec, Vasja, 2016. "Monetary, fiscal and oil shocks: Evidence based on mixed frequency structural FAVARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 335-348.
    2. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Paper 1227, Federal Reserve Bank of Cleveland.
    3. Bacchiocchi, Emanuele & Bastianin, Andrea & Missale, Alessandro & Rossi, Eduardo, 2016. "Structural analysis with mixed frequencies: monetary policy, uncertainty and gross capital flows," Working Papers 2016-04, Joint Research Centre, European Commission (Ispra site).
    4. Casarin, Roberto & Foroni, Claudia & Marcellino, Massimiliano & Ravazzolo, Francesco, 2017. "Uncertainty Through the Lenses of A Mixed-Frequency Bayesian Panel Markov Switching Model," CEPR Discussion Papers 12339, C.E.P.R. Discussion Papers.
    5. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    6. Laurent Ferrara & Pierre Guérin, 2016. "What Are the Macroeconomic Effects of High-Frequency Uncertainty Shocks," Staff Working Papers 16-25, Bank of Canada.
    7. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
    8. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    9. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.
    10. Claudia Foroni & Massimiliano Marcellino, 2014. "Mixed frequency structural VARs," Working Paper 2014/01, Norges Bank.
    11. Bent Jesper Christensen & Olaf Posch & Michel van der Wel, 2014. "Estimating Dynamic Equilibrium Models Using Mixed Frequency Macro and Financial Data," CESifo Working Paper Series 5030, CESifo Group Munich.

  6. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.

    Cited by:

    1. Jos Jansen & Jasper de Winter, 2016. "Improving model-based near-term GDP forecasts by subjective forecasts: A real-time exercise for the G7 countries," DNB Working Papers 507, Netherlands Central Bank, Research Department.
    2. Schwarzmüller, Tim, 2015. "Model pooling and changes in the informational content of predictors: An empirical investigation for the euro area," Kiel Working Papers 1982, Kiel Institute for the World Economy (IfW).
    3. A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
    4. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    5. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    6. Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2017. "Mixed-frequency models for tracking short-term economic developments in Switzerland," Working Papers 2017-02, Swiss National Bank.
    7. Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW).
    8. Pérez Quirós, Gabriel & Pérez, Javier J. & Paredes, Joan, 2015. "Fiscal targets. A guide to forecasters?," Working Paper Series 1834, European Central Bank.
    9. Michal Franta & David Havrlant & Marek Rusnak, 2014. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Working Papers 2014/08, Czech National Bank, Research Department.
    10. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    11. Mikosch, Heiner & Solanko, Laura, 2017. "Should one follow movements in the oil price or in money supply? Forecasting quarterly GDP growth in Russia with higher-frequency indicators," BOFIT Discussion Papers 19/2017, Bank of Finland, Institute for Economies in Transition.
    12. Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
    13. Fornaro, Paolo, 2016. "Predicting Finnish economic activity using firm-level data," International Journal of Forecasting, Elsevier, vol. 32(1), pages 10-19.
    14. Jos Jansen, W. & Jin, Xiaowen & Winter, Jasper M. de, 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," Munich Reprints in Economics 43488, University of Munich, Department of Economics.
    15. Cláudia Duarte & Paulo M.M. Rodrigues & António Rua, 2016. "A Mixed Frequency Approach to Forecast Private Consumption with ATM/POS Data," Working Papers w201601, Banco de Portugal, Economics and Research Department.
    16. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.
    17. Heinisch, Katja, 2016. "A real-time analysis on the importance of hard and soft data for nowcasting German GDP," Annual Conference 2016 (Augsburg): Demographic Change 145864, Verein für Socialpolitik / German Economic Association.
    18. Heinisch, Katja & Scheufele, Rolf, 2017. "Should forecasters use real-time data to evaluate leading indicator models for GDP prediction? German evidence," IWH Discussion Papers 5/2017, Halle Institute for Economic Research (IWH).
    19. Pirschel, Inske, 2015. "Forecasting Euro Area Recessions in real-time with a mixed-frequency Bayesian VAR," Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113031, Verein für Socialpolitik / German Economic Association.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 19 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ETS: Econometric Time Series (13) 2012-02-27 2012-03-28 2012-04-10 2013-02-16 2013-07-05 2014-01-17 2014-06-02 2014-08-02 2014-11-01 2015-11-07 2016-11-27 2017-10-08 2018-02-26. Author is listed
  2. NEP-FOR: Forecasting (10) 2012-02-27 2012-04-10 2013-02-16 2014-06-02 2014-08-02 2014-11-01 2015-11-07 2015-11-15 2016-03-06 2018-02-26. Author is listed
  3. NEP-ECM: Econometrics (9) 2012-02-27 2013-02-16 2013-07-05 2014-01-17 2014-06-02 2014-08-02 2015-11-07 2016-11-27 2018-02-26. Author is listed
  4. NEP-MAC: Macroeconomics (8) 2012-02-27 2012-04-10 2014-06-02 2014-08-02 2014-11-01 2015-05-16 2015-11-07 2018-02-26. Author is listed
  5. NEP-MST: Market Microstructure (4) 2013-02-16 2013-03-02 2013-07-05 2015-11-07
  6. NEP-ORE: Operations Research (4) 2014-06-02 2014-08-02 2015-11-07 2017-10-08
  7. NEP-EEC: European Economics (2) 2012-04-10 2016-03-06
  8. NEP-CBA: Central Banking (1) 2017-05-28
  9. NEP-DGE: Dynamic General Equilibrium (1) 2013-07-05
  10. NEP-ENE: Energy Economics (1) 2017-03-12
  11. NEP-LAB: Labour Economics (1) 2015-05-16
  12. NEP-MON: Monetary Economics (1) 2017-05-28

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Claudia Foroni should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.