IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v32y2017i3p683-703.html

Euromind‐ D : A Density Estimate of Monthly Gross Domestic Product for the Euro Area

Author

Listed:
  • Tommaso Proietti
  • Martyna Marczak
  • Gianluigi Mazzi

Abstract

EuroMInd-D is a density estimate of monthly gross domestic product (GDP) constructed according to a bottom–up approach, pooling the density estimates of eleven GDP components, by output and expenditure type. The components density estimates are obtained from a medium-size dynamic factor model of a set of coincident time series handling mixed frequencies of observation and ragged–edged data structures. They reflect both parameter and filtering uncertainty and are obtained by implementing a bootstrap algorithm for simulating from the distribution of the maximum likelihood estimators of the model parameters, and conditional simulation filters for simulating from the predictive distribution of GDP. Both algorithms process sequentially the data as they become available in real time. The GDP density estimates for the output and expenditure approach are combined using alternative weighting schemes and evaluated with different tests based on the probability integral transform and by applying scoring rules.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2017. "Euromind‐ D : A Density Estimate of Monthly Gross Domestic Product for the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 683-703, April.
  • Handle: RePEc:wly:japmet:v:32:y:2017:i:3:p:683-703
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taylor, James W., 2020. "A strategic predictive distribution for tests of probabilistic calibration," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1380-1388.
    2. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    3. Proietti, Tommaso & Giovannelli, Alessandro & Ricchi, Ottavio & Citton, Ambra & Tegami, Christían & Tinti, Cristina, 2021. "Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1376-1398.
    4. Barbara Rossi, 2021. "Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them," Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
    5. Tommaso Proietti & Alessandro Giovannelli, 2021. "Nowcasting monthly GDP with big data: A model averaging approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 683-706, April.
    6. Gregor Bäurle & Elizabeth Steiner & Gabriel Züllig, 2021. "Forecasting the production side of GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 458-480, April.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:32:y:2017:i:3:p:683-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.