IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

How useful are historical data for forecasting the long-run equity return distribution?

  • John M Maheu
  • Thomas H McCurdy

We provide an approach to forecasting the long-run (unconditional) distribution of equity returns making optimal use of historical data in the presence of structural breaks. Our focus is on learning about breaks in real time and assessing their impact on out-of-sample density forecasts. Forecasts use a probability-weighted average of submodels, each of which is estimated over a different history of data. The paper illustrates the importance of uncertainty about structural breaks and the value of modeling higher-order moments of excess returns when forecasting the return distribution and its moments. The shape of the long-run distribution and the dynamics of the higher-order moments are quite different from those generated by forecasts which cannot capture structural breaks. The empirical results strongly reject ignoring structural change in favor of our forecasts which weight historical data to accommodate uncertainty about structural breaks. We also strongly reject the common practice of using a fixed-length moving window. These differences in long-run forecasts have implications for many financial decisions, particularly for risk management and long-run investment decisions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://www.economics.utoronto.ca/public/workingPapers/tecipa-293.pdf
File Function: Main Text
Download Restriction: no

Paper provided by University of Toronto, Department of Economics in its series Working Papers with number tecipa-293.

as
in new window

Length: 45 pages
Date of creation: 28 Jun 2007
Date of revision:
Handle: RePEc:tor:tecipa:tecipa-293
Contact details of provider: Postal: 150 St. George Street, Toronto, Ontario
Phone: (416) 978-5283

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," CESifo Working Paper Series 1237, CESifo Group Munich.
  2. Allan Timmermann & M. Hashem Pesaran, 2002. "Market Timing and Return Prediction under Model Instability," FMG Discussion Papers dp412, Financial Markets Group.
  3. Turner, C.M. & Startz, R. & Nelson, C.R., 1989. "The Markov Model Of Heteroskedasticity, Risk And Learning In The Stock Market," Working Papers 89-01, University of Washington, Department of Economics.
  4. Luboš Pástor & Robert F. Stambaugh, 2000. "The Equity Premium and Structural Breaks," CRSP working papers 519, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
  5. Jonathan H. Wright, 2009. "Forecasting US inflation by Bayesian model averaging," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 131-144.
  6. Todd E. Clark & Michael W. McCracken, 2007. "Averaging forecasts from VARs with uncertain instabilities," Finance and Economics Discussion Series 2007-42, Board of Governors of the Federal Reserve System (U.S.).
  7. Scott Mayfield, E., 2004. "Estimating the market risk premium," Journal of Financial Economics, Elsevier, vol. 73(3), pages 465-496, September.
  8. Eklund, Jana & Karlsson, Sune, 2005. "Forecast Combination and Model Averaging Using Predictive Measures," CEPR Discussion Papers 5268, C.E.P.R. Discussion Papers.
  9. Giordani, Paolo & Kohn, Robert, 2006. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Working Paper Series 196, Sveriges Riksbank (Central Bank of Sweden).
  10. John M Maheu & Stephen Gordon, 2007. "Learning, Forecasting and Structural Breaks," Working Papers tecipa-284, University of Toronto, Department of Economics.
  11. Martin Lettau & Sydney C. Ludvigson & Jessica A. Wachter, 2008. "The Declining Equity Premium: What Role Does Macroeconomic Risk Play?," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1653-1687, July.
  12. Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
  13. John Y. Campbell & Samuel B. Thompson, 2005. "Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?," Harvard Institute of Economic Research Working Papers 2084, Harvard - Institute of Economic Research.
  14. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
  15. David E. Rapach & Mark E. Wohar, 2006. "Structural Breaks and Predictive Regression Models of Aggregate U.S. Stock Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(2), pages 238-274.
  16. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649 Elsevier.
  17. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
  18. Martin Lettau, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, 06.
  19. Martin Lettau & Stijn Van Nieuwerburgh, 2008. "Reconciling the Return Predictability Evidence," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1607-1652, July.
  20. Mehra, Rajnish & Prescott, Edward C., 2003. "The equity premium in retrospect," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 14, pages 889-938 Elsevier.
  21. Eugene F. Fama & Kenneth R. French, 2002. "The Equity Premium," Journal of Finance, American Finance Association, vol. 57(2), pages 637-659, 04.
  22. Schwert, G William, 1990. "Indexes of U.S. Stock Prices from 1802 to 1987," The Journal of Business, University of Chicago Press, vol. 63(3), pages 399-426, July.
  23. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
  24. Eric Jacquier & Alex Kane & Alan J. Marcus, 2005. "Optimal Estimation of the Risk Premium for the Long Run and Asset Allocation: A Case of Compounded Estimation Risk," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(1), pages 37-55.
  25. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," Review of Economic Studies, Oxford University Press, vol. 74(3), pages 763-789.
  26. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, 02.
  27. Siegel, Jeremy J., 1992. "The real rate of interest from 1800-1990 : A study of the U.S. and the U.K," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 227-252, April.
  28. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, Elsevier.
  29. Turner, Christopher M. & Startz, Richard & Nelson, Charles R., 1989. "A Markov model of heteroskedasticity, risk, and learning in the stock market," Journal of Financial Economics, Elsevier, vol. 25(1), pages 3-22, November.
  30. Kim, Chang-Jin & Morley, James C. & Nelson, Charles R., 2005. "The Structural Break in the Equity Premium," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 181-191, April.
  31. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
  32. K. J. Martijn Cremers, 2002. "Stock Return Predictability: A Bayesian Model Selection Perspective," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1223-1249.
  33. Graham, John R. & Harvey, Campbell R., 2005. "The long-run equity risk premium," Finance Research Letters, Elsevier, vol. 2(4), pages 185-194, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:tor:tecipa:tecipa-293. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePEc Maintainer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.