IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Real Time Detection of Structural Breaks in GARCH Models

  • Zhongfang He
  • John M. Maheu

A sequential Monte Carlo method for estimating GARCH models subject to an unknown number of structural breaks is proposed. Particle filtering techniques allow for fast and efficient updates of posterior quantities and forecasts in real time. The method conveniently deals with the path dependence problem that arises in these type of models. The performance of the method is shown to work well using simulated data. Applied to daily NASDAQ returns, the evidence favors a partial structural break specification in which only the intercept of the conditional variance equation has breaks compared to the full structural break specification in which all parameters are subject to change. The empirical application underscores the importance of model assumptions when investigating breaks. A model with normal return innovations results in strong evidence of breaks; while more flexible return distributions such as t-innovations or a GARCH-jump mixture model still favors breaks but indicates much more uncertainty regarding the time and impact of them.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.bankofcanada.ca/wp-content/uploads/2010/02/wp09-31.pdf
Download Restriction: no

Paper provided by Bank of Canada in its series Working Papers with number 09-31.

as
in new window

Length: 34 pages
Date of creation: 2009
Date of revision:
Handle: RePEc:bca:bocawp:09-31
Contact details of provider: Postal: 234 Wellington Street, Ottawa, Ontario, K1A 0G9, Canada
Phone: 613 782-8845
Fax: 613 782-8874
Web page: http://www.bank-banque-canada.ca/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  2. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 326-360, Summer.
  3. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," Review of Economic Studies, Oxford University Press, vol. 74(3), pages 763-789.
  4. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
  5. John M Maheu & Thomas H McCurdy, 2007. "How useful are historical data for forecasting the long-run equity return distribution?," Working Papers tecipa-293, University of Toronto, Department of Economics.
  6. Lubos Pastor & Robert F. Stambaugh, 2000. "The Equity Premium and Structural Breaks," NBER Working Papers 7778, National Bureau of Economic Research, Inc.
  7. John M Maheu & Stephen Gordon, 2007. "Learning, Forecasting and Structural Breaks," Working Papers tecipa-284, University of Toronto, Department of Economics.
  8. Roberto Casarin & Carmine Trecroci, 2006. "Business Cycle and Stock Market Volatility: A Particle Filter Approach," Working Papers ubs0603, University of Brescia, Department of Economics.
  9. Chopin, Nicolas & Pelgrin, Florian, 2004. "Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation," Journal of Econometrics, Elsevier, vol. 123(2), pages 327-344, December.
  10. Walter R. Gilks & Carlo Berzuini, 2001. "Following a moving target-Monte Carlo inference for dynamic Bayesian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 127-146.
  11. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
  12. Scott S. L., 2002. "Bayesian Methods for Hidden Markov Models: Recursive Computing in the 21st Century," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 337-351, March.
  13. Nicolas Chopin, 2007. "Dynamic Detection of Change Points in Long Time Series," Annals of the Institute of Statistical Mathematics, Springer, vol. 59(2), pages 349-366, June.
  14. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," CESifo Working Paper Series 1237, CESifo Group Munich.
  15. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
  16. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
  17. Nicholas G. Polson & Jonathan R. Stroud & Peter Müller, 2008. "Practical filtering with sequential parameter learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 413-428.
  18. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, EconWPA.
  19. Kim, Chang-Jin & Morley, James C. & Nelson, Charles R., 2005. "The Structural Break in the Equity Premium," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 181-191, April.
  20. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(4), pages 493-530.
  21. Catalin Starica & Clive Granger, 2004. "Non-stationarities in stock returns," Econometrics 0411016, EconWPA.
  22. Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2006. "Regime switching GARCH models," Cahiers de recherche 06-08, HEC Montréal, Institut d'économie appliquée.
  23. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  24. Roberto Casarin & Jean-Michel Marin, 2007. "Online data processing: comparison of Bayesian regularized particle filters," Working Papers 0703, University of Brescia, Department of Economics.
  25. He, Zhongfang & Maheu, John M., 2010. "Real time detection of structural breaks in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
  26. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
  27. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-34, April.
  28. Carvalho, Carlos M. & Lopes, Hedibert F., 2007. "Simulation-based sequential analysis of Markov switching stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4526-4542, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:09-31. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.