IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2009061.html
   My bibliography  Save this paper

On marginal likelihood computation in change-point models

Author

Listed:
  • BAUWENS, Luc

    () (Université catholique de Louvain (UCL). Center for Operations Research and Econometrics (CORE))

  • ROMBOUTS, Jeroen

    () (Institute of Applied Economics at HEC Montréal)

Abstract

Change-point models are useful for modeling time series subject to structural breaks. For interpretation and forecasting, it is essential to estimate correctly the number of change points in this class of models. In Bayesian inference, the number of change points is typically chosen by the marginal likelihood criterion, computed by Chib's method. This method requires to select a value in the parameter space at which the computation is done. We explain in detail how to perform Bayesian inference for a change-point dynamic regression model and how to compute its marginal likelihood. Motivated by our results from three empirical illustrations, a simulation study shows that Chib's method is robust with respect to the choice of the parameter value used in the computations, among posterior mean, mode and quartiles. Furthermore, the performance of the Bayesian information criterion, which is based on maximum likelihood estimates, in selecting the correct model is comparable to that of the marginal likelihood.

Suggested Citation

  • BAUWENS, Luc & ROMBOUTS, Jeroen, 2009. "On marginal likelihood computation in change-point models," CORE Discussion Papers 2009061, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2009061
    as

    Download full text from publisher

    File URL: http://www.uclouvain.be/cps/ucl/doc/core/documents/coredp2009_61web.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Ardia & Lennart Hoogerheide & Herman K. van Dijk, 2009. "To Bridge, to Warp or to Wrap? A Comparative Study of Monte Carlo Methods for Efficient Evaluation of Marginal Likelihoods," Tinbergen Institute Discussion Papers 09-017/4, Tinbergen Institute.
    2. Johnson, Lorne D. & Sakoulis, Georgios, 2008. "Maximizing equity market sector predictability in a Bayesian time-varying parameter model," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3083-3106, February.
    3. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 326-360, Summer.
    4. Kim, Chang-Jin & Piger, Jeremy, 2002. "Common stochastic trends, common cycles, and asymmetry in economic fluctuations," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1189-1211, September.
    5. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    6. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    7. Llubos Pástor, 2001. "The Equity Premium and Structural Breaks," Journal of Finance, American Finance Association, vol. 56(4), pages 1207-1239, August.
    8. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," Review of Economic Studies, Oxford University Press, vol. 73(4), pages 1057-1084.
    9. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    10. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
    11. Kim, Chang-Jin & Morley, James C. & Nelson, Charles R., 2005. "The Structural Break in the Equity Premium," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 181-191, April.
    12. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    13. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    14. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    15. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
    16. Paroli, Roberta & Spezia, Luigi, 2008. "Bayesian inference in non-homogeneous Markov mixtures of periodic autoregressions with state-dependent exogenous variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2311-2330, January.
    17. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    18. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    19. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Fast computation of the deviance information criterion for latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
    2. Fiorentini, G. & Planas, C. & Rossi, A., 2012. "The marginal likelihood of dynamic mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2650-2662.
    3. Francesco Zanetti & Philip Liu & Haroon Mumtaz & Konstantinos Theodoridis, 2017. "Changing Macroeconomic Dynamics at the Zero Lower Bound," Economics Series Working Papers 824, University of Oxford, Department of Economics.
    4. van den Hout, Ardo & Muniz-Terrera, Graciela & Matthews, Fiona E., 2013. "Change point models for cognitive tests using semi-parametric maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 684-698.
    5. Soosung Hwang & Alexandre Rubesam, 2015. "The disappearance of momentum," The European Journal of Finance, Taylor & Francis Journals, vol. 21(7), pages 584-607, May.

    More about this item

    Keywords

    BIC; change-point model; Chib's method; marginal likelihood;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2009061. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS). General contact details of provider: http://edirc.repec.org/data/coreebe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.