IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Forecasting Time Series Subject to Multiple Structural Breaks

  • M. Hashem Pesaran
  • Davide Pettenuzzo
  • Allan Timmermann

This paper provides a new approach to forecasting time series that are subject to discrete structural breaks. We propose a Bayesian estimation and prediction procedure that allows for the possibility of new breaks occurring over the forecast horizon, taking account of the size and duration of past breaks (if any) by means of a hierarchical hidden Markov chain model. Predictions are formed by integrating over the parameters from the meta-distribution that characterizes the stochastic break-point process. In an application to U.S. Treasury bill rates, we find that the method leads to better out-of-sample forecasts than a range of alternative methods. Copyright 2006, Wiley-Blackwell.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1111/j.1467-937X.2006.00408.x
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Oxford University Press in its journal The Review of Economic Studies.

Volume (Year): 73 (2006)
Issue (Month): 4 ()
Pages: 1057-1084

as
in new window

Handle: RePEc:oup:restud:v:73:y:2006:i:4:p:1057-1084
Contact details of provider:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Diebold, Francis X. & Pauly, Peter, 1990. "The use of prior information in forecast combination," International Journal of Forecasting, Elsevier, vol. 6(4), pages 503-508, December.
  2. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-82, April.
  3. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
  4. Allan Timmermann & M. Hashem Pesaran, 2002. "Market Timing and Return Prediction under Model Instability," FMG Discussion Papers dp412, Financial Markets Group.
  5. Garcia, R. & Perron, P., 1994. "An Analysis of the Real Interest rate Under Regime Shifts," Cahiers de recherche 9428, Universite de Montreal, Departement de sciences economiques.
  6. Allan Timmermann & M. Hashem Pesaran, 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," CESifo Working Paper Series 990, CESifo Group Munich.
  7. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
  8. Lubos Pastor & Robert F. Stambaugh, 2000. "The Equity Premium and Structural Breaks," NBER Working Papers 7778, National Bureau of Economic Research, Inc.
  9. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
  10. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
  11. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, March.
  12. Garrat, A. & Lee, K. & Pesaran, M.H. & Shin, Y., 2000. "Forecast Uncertainties in Macroeconometric Modelling: An Application to the UK Economy," Cambridge Working Papers in Economics 0004, Faculty of Economics, University of Cambridge.
  13. John M Maheu & Stephen Gordon, 2007. "Learning, Forecasting and Structural Breaks," Working Papers tecipa-284, University of Toronto, Department of Economics.
  14. Chang-Jin Kim & Charles R. Nelson & Jeremy M. Piger, 2003. "The less volatile U.S. economy: a Bayesian investigation of timing, breadth, and potential explanations," Working Papers 2001-016, Federal Reserve Bank of St. Louis.
  15. BAI, Jushan & PERRON, Pierre, 1998. "Computation and Analysis of Multiple Structural-Change Models," Cahiers de recherche 9807, Universite de Montreal, Departement de sciences economiques.
  16. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
  17. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
  18. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, December.
  19. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
  20. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
  21. Alogoskoufis, George S & Smith, Ron, 1991. "The Phillips Curve, the Persistence of Inflation, and the Lucas Critique: Evidence from Exchange-Rate Regimes," American Economic Review, American Economic Association, vol. 81(5), pages 1254-75, December.
  22. Gary Koop & Simon M. Potter, 1999. "Are apparent findings of nonlinearity due to structural instability in economic time series?," Staff Reports 59, Federal Reserve Bank of New York.
  23. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  24. Clements, Michael P. & Hendry, David F., 1998. "Forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 14(1), pages 111-131, March.
Full references (including those not matched with items on IDEAS)

This item is featured on the following reading lists or Wikipedia pages:

  1. Forecasting Time Series Subject to Multiple Structural Breaks (REStud 2006) in ReplicationWiki

When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:73:y:2006:i:4:p:1057-1084. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.