IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Change point models for cognitive tests using semi-parametric maximum likelihood

  • van den Hout, Ardo
  • Muniz-Terrera, Graciela
  • Matthews, Fiona E.
Registered author(s):

    Random-effects change point models are formulated for longitudinal data obtained from cognitive tests. The conditional distribution of the response variable in a change point model is often assumed to be normal even if the response variable is discrete and shows ceiling effects. For the sum score of a cognitive test, the binomial and the beta-binomial distributions are presented as alternatives to the normal distribution. Smooth shapes for the change point models are imposed. Estimation is by marginal maximum likelihood where a parametric population distribution for the random change point is combined with a non-parametric mixing distribution for other random effects. An extension to latent class modelling is possible in case some individuals do not experience a change in cognitive ability. The approach is illustrated using data from a longitudinal study of Swedish octogenarians and nonagenarians that began in 1991. Change point models are applied to investigate cognitive change in the years before death.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002988
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 57 (2013)
    Issue (Month): 1 ()
    Pages: 684-698

    as
    in new window

    Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:684-698
    Contact details of provider: Web page: http://www.elsevier.com/locate/csda

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Chiu, Grace & Lockhart, Richard & Routledge, Richard, 2006. "Bent-Cable Regression Theory and Applications," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 542-553, June.
    2. Daniel Rudoy & Shelten G. Yuen & Robert D. Howe & Patrick J. Wolfe, 2010. "Bayesian change-point analysis for atomic force microscopy and soft material indentation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 573-593.
    3. Bauwens, Luc & Rombouts, Jeroen V.K., 2012. "On marginal likelihood computation in change-point models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3415-3429.
    4. Stasinopoulos, D. M. & Rigby, R. A., 1992. "Detecting break points in generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 13(4), pages 461-471, May.
    5. G. Muniz Terrera & A. van den Hout & F. E. Matthews, 2011. "Random change point models: investigating cognitive decline in the presence of missing data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(4), pages 705-716, November.
    6. Sonja Greven & Thomas Kneib, 2010. "On the behaviour of marginal and conditional AIC in linear mixed models," Biometrika, Biometrika Trust, vol. 97(4), pages 773-789.
    7. Hall, Charles B. & Ying, Jun & Kuo, Lynn & Lipton, Richard B., 2003. "Bayesian and profile likelihood change point methods for modeling cognitive function over time," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 91-109, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:684-698. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.