IDEAS home Printed from
   My bibliography  Save this article

Bayesian change-point analysis for atomic force microscopy and soft material indentation


  • Daniel Rudoy
  • Shelten G. Yuen
  • Robert D. Howe
  • Patrick J. Wolfe


Material indentation studies, in which a probe is brought into controlled physical contact with an experimental sample, have long been a primary means by which scientists characterize the mechanical properties of materials. More recently, the advent of atomic force microscopy, which operates on the same fundamental principle, has in turn revolutionized the nanoscale analysis of soft biomaterials such as cells and tissues. The paper addresses the inferential problems that are associated with material indentation and atomic force microscopy, through a framework for the change-point analysis of pre-contact and post-contact data that is applicable to experiments across a variety of physical scales. A hierarchical Bayesian model is proposed to account for experimentally observed change-point smoothness constraints and measurement error variability, with efficient Monte Carlo methods developed and employed to realize inference via posterior sampling for parameters such as Young's modulus, which is a key quantifier of material stiffness. These results are the first to provide the materials science community with rigorous inference procedures and quantification of uncertainty, via optimized and fully automated high throughput algorithms, implemented as the publicly available software package BayesCP. To demonstrate the consistent accuracy and wide applicability of this approach, results are shown for a variety of data sets from both macromaterials and micromaterials experiments-including silicone, neurons and red blood cells-conducted by the authors and others. Copyright (c) 2010 Royal Statistical Society.

Suggested Citation

  • Daniel Rudoy & Shelten G. Yuen & Robert D. Howe & Patrick J. Wolfe, 2010. "Bayesian change-point analysis for atomic force microscopy and soft material indentation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 573-593.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:4:p:573-593

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. van den Hout, Ardo & Muniz-Terrera, Graciela & Matthews, Fiona E., 2013. "Change point models for cognitive tests using semi-parametric maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 684-698.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:4:p:573-593. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.