IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v13y2021i1d10.1007_s12561-020-09287-y.html
   My bibliography  Save this article

Bayesian Quantile Bent-Cable Growth Models for Longitudinal Data with Skewness and Detection Limit

Author

Listed:
  • Getachew A. Dagne

    (University of South Florida)

Abstract

This paper presents a Bayesian quantile bent-cable growth model for modeling data with multi-phasic trajectories of response variables measured in longitudinal studies. Estimating and identifying such possible multiple phasic change points may be of substantial interest since it provides a general life-course view of the developmental trajectories and also when the directions of the trajectories are disrupted. For getting a complete picture of such developmental trajectories, quantile growth models, at different parts (quantiles) of the response variables, are better than the commonly used conditional mean models. For each quantile, we develop bent-cable models to assess multi-phasic patterns of trajectories of longitudinal HIV/AIDS data with left-censoring and skewness. The proposed procedures are illustrated using real data from an AIDS clinical study.

Suggested Citation

  • Getachew A. Dagne, 2021. "Bayesian Quantile Bent-Cable Growth Models for Longitudinal Data with Skewness and Detection Limit," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 129-141, April.
  • Handle: RePEc:spr:stabio:v:13:y:2021:i:1:d:10.1007_s12561-020-09287-y
    DOI: 10.1007/s12561-020-09287-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-020-09287-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-020-09287-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arabmazar, Abbas & Schmidt, Peter, 1982. "An Investigation of the Robustness of the Tobit Estimator to Non-Normality," Econometrica, Econometric Society, vol. 50(4), pages 1055-1063, July.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.
    4. Chiu, Grace & Lockhart, Richard & Routledge, Richard, 2006. "Bent-Cable Regression Theory and Applications," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 542-553, June.
    5. Francisca Galindo Garre & Aeilko H. Zwinderman & Ronald B. Geskus & Yvo W. J. Sijpkens, 2008. "A joint latent class changepoint model to improve the prediction of time to graft failure," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 299-308, January.
    6. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    7. Hall, Charles B. & Ying, Jun & Kuo, Lynn & Lipton, Richard B., 2003. "Bayesian and profile likelihood change point methods for modeling cognitive function over time," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 91-109, February.
    8. Wu L., 2002. "A Joint Model for Nonlinear Mixed-Effects Models With Censoring and Covariates Measured With Error, With Application to AIDS Studies," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 955-964, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    2. Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.
    3. Dagne Getachew & Huang Yangxin, 2012. "Bayesian inference for a nonlinear mixed-effects Tobit model with multivariate skew-t distributions: application to AIDS studies," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-24, September.
    4. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    5. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    6. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    7. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    8. Michel Lubrano & Abdoul Aziz Junior Ndoye, 2014. "Bayesian Unconditional Quantile Regression: An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the US 1992–2009," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(2), pages 129-153, May.
    9. Tsionas, Mike G., 2020. "Quantile Stochastic Frontiers," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1177-1184.
    10. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    11. Wu Wang & Zhongyi Zhu, 2017. "Conditional empirical likelihood for quantile regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 1-16, January.
    12. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    13. Zijian Zeng & Meng Li, 2020. "Bayesian Median Autoregression for Robust Time Series Forecasting," Papers 2001.01116, arXiv.org, revised Dec 2020.
    14. Gustavsen, Geir Waehler, 2005. "Public Policies and the Demand for Carbonated Soft Drinks: A Censored Quantile Regression Approach," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24737, European Association of Agricultural Economists.
    15. Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.
    16. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
    17. Cathy W.S. Chen & Mike K.P. So & Thomas C. Chiang, 2016. "Evidence of Stock Returns and Abnormal Trading Volume: A Threshold Quantile Regression Approach," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 96-124, March.
    18. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    19. Salaheddine El Adlouni, 2018. "Quantile regression C-vine copula model for spatial extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 299-317, October.
    20. Jose E. Gomez-Gonzalez & Jorge M. Uribe & Oscar M. Valencia, 2024. "Asymmetric Sovereign Risk: Implications for Climate Change Preparation," IREA Working Papers 202401, University of Barcelona, Research Institute of Applied Economics, revised Jan 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:13:y:2021:i:1:d:10.1007_s12561-020-09287-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.