IDEAS home Printed from https://ideas.repec.org/p/wrk/warwec/1159.html
   My bibliography  Save this paper

Bayesian Vector Autoregressions

Author

Listed:
  • Miranda-Agrippino, Silvia

    (Bank of England and CFM)

  • Ricco, Giovanni

    (University of Warwick and OFCE - SciencesPo)

Abstract

This article reviews Bayesian inference methods for Vector Autoregression models, commonly used priors for economic and financial variables, and applications to structural analysis and forecasting.

Suggested Citation

  • Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
  • Handle: RePEc:wrk:warwec:1159
    as

    Download full text from publisher

    File URL: https://warwick.ac.uk/fac/soc/economics/research/workingpapers/2018/twerp_1159_ricco.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Deborah Gefang, 2012. "Money‐output Causality Revisited – A Bayesian Logistic Smooth Transition VECM Perspective," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(1), pages 131-151, February.
    2. Dimitris Korobilis, 2013. "Var Forecasting Using Bayesian Variable Selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
    3. Robertson, John C & Tallman, Ellis W & Whiteman, Charles H, 2005. "Forecasting Using Relative Entropy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 383-401, June.
    4. repec:eee:moneco:v:90:y:2017:i:c:p:13-27 is not listed on IDEAS
    5. Uhlig, Harald, 1994. "On Jeffreys Prior when Using the Exact Likelihood Function," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 633-644, August.
    6. Jochmann Markus & Koop Gary, 2015. "Regime-switching cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 35-48, February.
    7. Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 2016_09, Business School - Economics, University of Glasgow.
    8. Domenico Giannone & Michele Lenza & Lucrezia Reichlin, 2008. "Explaining The Great Moderation: It Is Not The Shocks," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 621-633, 04-05.
    9. Ricco, Giovanni & Callegari, Giovanni & Cimadomo, Jacopo, 2016. "Signals from the government: Policy disagreement and the transmission of fiscal shocks," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 107-118.
    10. Bloor, Chris & Matheson, Troy, 2011. "Real-time conditional forecasts with Bayesian VARs: An application to New Zealand," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 26-42, January.
    11. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    12. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    13. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    14. Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014. "Hierarchical Shrinkage in Time‐Varying Parameter Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
    15. Bok, Brandyn & Caratelli, Daniele & Giannone, Domenico & Sbordone, Argia M. & Tambalotti, Andrea, 2017. "Macroeconomic nowcasting and forecasting with big data," Staff Reports 830, Federal Reserve Bank of New York.
    16. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    17. repec:wly:japmet:v:31:y:2016:i:7:p:1371-1391 is not listed on IDEAS
    18. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
    19. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    20. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    21. Ingram, Beth F. & Whiteman, Charles H., 1994. "Supplanting the 'Minnesota' prior: Forecasting macroeconomic time series using real business cycle model priors," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 497-510, December.
    22. Kim, Jae-Young, 1994. "Bayesian Asymptotic Theory in a Time Series Model with a Possible Nonstationary Process," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 764-773, August.
    23. Phillips, P C B, 1991. "Bayesian Routes and Unit Roots: De Rebus Prioribus Semper Est Disputandum," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 435-473, Oct.-Dec..
    24. Canova, Fabio & Ciccarelli, Matteo, 2004. "Forecasting and turning point predictions in a Bayesian panel VAR model," Journal of Econometrics, Elsevier, vol. 120(2), pages 327-359, June.
    25. repec:cup:cbooks:9781316647332 is not listed on IDEAS
    26. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    27. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    28. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, issue Q1, pages 4-18.
    29. repec:cup:cbooks:9781107196575 is not listed on IDEAS
    30. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
    31. Kwan, Yum K., 1998. "Asymptotic Bayesian analysis based on a limited information estimator," Journal of Econometrics, Elsevier, vol. 88(1), pages 99-121, November.
    32. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1, May.
    33. Antolin-Diaz, Juan & Petrella, Ivan & Rubio-Ramírez, Juan Francisco, 2018. "Structural Scenario Analysis with SVARs," CEPR Discussion Papers 12579, C.E.P.R. Discussion Papers.
    34. Ellahie, Atif & Ricco, Giovanni, 2017. "Government purchases reloaded: Informational insufficiency and heterogeneity in fiscal VARs," Journal of Monetary Economics, Elsevier, vol. 90(C), pages 13-27.
    35. Gregor Kastner & Florian Huber, 2017. "Sparse Bayesian vector autoregressions in huge dimensions," Papers 1704.03239, arXiv.org, revised Jun 2018.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bayesian inference ; Vector Autoregression Models ; BVAR ; SVAR ; forecasting;

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wrk:warwec:1159. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Margaret Nash). General contact details of provider: http://edirc.repec.org/data/dewaruk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.