IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v31y2016i7p1371-1391.html
   My bibliography  Save this article

Forecasting with Global Vector Autoregressive Models: a Bayesian Approach

Author

Listed:
  • Jesús Crespo Cuaresma
  • Martin Feldkircher
  • Florian Huber

Abstract

No abstract is available for this item.

Suggested Citation

  • Jesús Crespo Cuaresma & Martin Feldkircher & Florian Huber, 2016. "Forecasting with Global Vector Autoregressive Models: a Bayesian Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1371-1391, November.
  • Handle: RePEc:wly:japmet:v:31:y:2016:i:7:p:1371-1391
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia, 2009. "Comments on "Forecasting economic and financial variables with global VARs"," International Journal of Forecasting, Elsevier, vol. 25(4), pages 684-686, October.
    2. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    3. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    4. Eickmeier, Sandra & Ng, Tim, 2015. "How do US credit supply shocks propagate internationally? A GVAR approach," European Economic Review, Elsevier, vol. 74(C), pages 128-145.
    5. Koop, Gary & Korobilis, Dimitris, 2016. "Model uncertainty in Panel Vector Autoregressive models," European Economic Review, Elsevier, vol. 81(C), pages 115-131.
    6. Dovern, Jonas & Feldkircher, Martin & Huber, Florian, 2015. "Does Joint Modelling of the World Economy Pay Off? Evaluating Multivariate Forecasts from a Bayesian GVAR," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112999, Verein für Socialpolitik / German Economic Association.
    7. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    8. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    9. Pesaran, Mohammad Hashem & Holly, Sean & Dees, Stephane & Smith, L. Vanessa, 2007. "Long Run Macroeconomic Relations in the Global Economy," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 1, pages 1-20.
    10. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    11. Feldkircher, Martin & Huber, Florian, 2016. "The international transmission of US shocks—Evidence from Bayesian global vector autoregressions," European Economic Review, Elsevier, vol. 81(C), pages 167-188.
    12. Garratt, Anthony & Lee, Kevin & Pesaran, M. Hashem & Shin, Yongcheol, 2012. "Global and National Macroeconometric Modelling: A Long-Run Structural Approach," OUP Catalogue, Oxford University Press, number 9780199650460.
    13. Korobilis, Dimitris, 2016. "Prior selection for panel vector autoregressions," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 110-120.
    14. Feldkircher, Martin, 2015. "A global macro model for emerging Europe," Journal of Comparative Economics, Elsevier, vol. 43(3), pages 706-726.
    15. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    16. Matthew Greenwood‐Nimmo & Viet Hoang Nguyen & Yongcheol Shin, 2012. "Probabilistic forecasting of output growth, inflation and the balance of trade in a GVAR framework," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(4), pages 554-573, June.
    17. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    18. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
    19. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    20. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    21. Dovern, Jonas & van Roye, Björn, 2014. "International transmission and business-cycle effects of financial stress," Journal of Financial Stability, Elsevier, vol. 13(C), pages 1-17.
    22. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    23. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    24. Korobilis, Dimitris, 2015. "Prior selection for panel vector autoregressions," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-73, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    25. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
    26. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    27. Silvia Sgherri & Alessandro Galesi, 2009. "Regional Financial Spillovers Across Europe; A Global VAR Analysis," IMF Working Papers 2009/023, International Monetary Fund.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Feldkircher & Thomas Gruber & Florian Huber, 2017. "Spreading the word or reducing the term spread? Assessing spillovers from euro area monetary policy," Department of Economics Working Papers wuwp248, Vienna University of Economics and Business, Department of Economics.
    2. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    3. Maximilian Böck & Martin Feldkircher & Florian Huber, 2020. "BGVAR: Bayesian Global Vector Autoregressions with Shrinkage Priors in R," Globalization Institute Working Papers 395, Federal Reserve Bank of Dallas.
    4. Andrejs Zlobins, 2019. "Country-Level Effects of the ECB's Expanded Asset Purchase Programme," Working Papers 2019/02, Latvijas Banka.
    5. Crespo Cuaresma, Jesus & Doppelhofer, Gernot & Feldkircher, Martin & Huber, Florian, 2018. "Spillovers from US monetary policy: Evidence from a time-varying parameter GVAR model," Discussion Paper Series in Economics 31/2018, Norwegian School of Economics, Department of Economics.
    6. Schnücker, A.M., 2019. "Penalized Estimation of Panel Vector Autoregressive Models," Econometric Institute Research Papers EI-2019-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Florian Huber & Tam'as Krisztin & Michael Pfarrhofer, 2018. "A Bayesian panel VAR model to analyze the impact of climate change on high-income economies," Papers 1804.01554, arXiv.org, revised Feb 2021.
    8. Jesús Crespo Cuaresma & Gernot Doppelhofer & Martin Feldkircher & Florian Huber, 2019. "Spillovers from US monetary policy: evidence from a time varying parameter global vector auto‐regressive model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(3), pages 831-861, June.
    9. Martin Feldkircher & Nico Hauzenberger, 2019. "How useful are time-varying parameter models for forecasting economic growth in CESEE?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/19, pages 29-48.
    10. Eller, Markus & Huber, Florian & Schuberth, Helene, 2020. "How important are global factors for understanding the dynamics of international capital flows?," Journal of International Money and Finance, Elsevier, vol. 109(C).
    11. Markus Eller & Florian Huber & Helene Schuberth, 2016. "Understanding the drivers of capital flows into the CESEE countries," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 2, pages 79-104.
    12. Deniz Sevinc & Edgar Mata Flores, 2021. "Macroeconomic and financial implications of multi‐dimensional interdependencies between OECD countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 741-776, January.
    13. Dovern, Jonas & Feldkircher, Martin & Huber, Florian, 2016. "Does joint modelling of the world economy pay off? Evaluating global forecasts from a Bayesian GVAR," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 86-100.
    14. Feldkircher, Martin & Gruber, Thomas & Huber, Florian, 2020. "International effects of a compression of euro area yield curves," Journal of Banking & Finance, Elsevier, vol. 113(C).
    15. Markus Eller & Florian Huber & Helene Schuberth, 2016. "Weathering global shocks and macrofinancial vulnerabilities in emerging Europe: Comparing Turkey and Poland," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 1, pages 46-65.
    16. Michaelides, Panayotis G. & Tsionas, Efthymios G. & Konstantakis, Konstantinos N., 2018. "Debt dynamics in Europe: A Network General Equilibrium GVAR approach," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 175-202.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florian Huber & Jesus Crespo-Cuaresma & Martin Feldkircher, 2014. "Forecasting with Bayesian Global Vector Autoregressions," ERSA conference papers ersa14p25, European Regional Science Association.
    2. Dovern, Jonas & Feldkircher, Martin & Huber, Florian, 2016. "Does joint modelling of the world economy pay off? Evaluating global forecasts from a Bayesian GVAR," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 86-100.
    3. Huber, Florian, 2016. "Density forecasting using Bayesian global vector autoregressions with stochastic volatility," International Journal of Forecasting, Elsevier, vol. 32(3), pages 818-837.
    4. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
    5. Korobilis, Dimitris, 2016. "Prior selection for panel vector autoregressions," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 110-120.
    6. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    7. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    8. Martin Feldkircher & Gabriele Tondl, 2020. "Global Factors Driving Inflation and Monetary Policy: A Global VAR Assessment," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 26(3), pages 225-247, August.
    9. Dimitrios P. Louzis, 2017. "Macroeconomic and credit forecasts during the Greek crisis using Bayesian VARs," Empirical Economics, Springer, vol. 53(2), pages 569-598, September.
    10. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    11. Auer, Simone, 2019. "Monetary policy shocks and foreign investment income: Evidence from a large Bayesian VAR," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 142-166.
    12. Todd E. Clark & Michael W. McCracken, 2014. "Evaluating Conditional Forecasts from Vector Autoregressions," Working Papers (Old Series) 1413, Federal Reserve Bank of Cleveland.
    13. Korobilis, Dimitris, 2015. "Prior selection for panel vector autoregressions," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-73, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Swamy, Vighneswara, 2020. "Macroeconomic transmission of Eurozone shocks to India—A mean-adjusted Bayesian VAR approach," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 126-150.
    15. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland.
    16. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    17. Damian Stelmasiak & Grzegorz Szafrański, 2016. "Forecasting the Polish Inflation Using Bayesian VAR Models with Seasonality," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 21-42, March.
    18. Schnücker, Annika, 2016. "Restrictions Search for Panel VARs," VfS Annual Conference 2016 (Augsburg): Demographic Change 145566, Verein für Socialpolitik / German Economic Association.
    19. Annika Schnücker, 2016. "Restrictions Search for Panel VARs," Discussion Papers of DIW Berlin 1612, DIW Berlin, German Institute for Economic Research.
    20. Fadejeva, Ludmila & Feldkircher, Martin & Reininger, Thomas, 2017. "International spillovers from Euro area and US credit and demand shocks: A focus on emerging Europe," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 1-25.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:31:y:2016:i:7:p:1371-1391. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.