IDEAS home Printed from https://ideas.repec.org/p/onb/oenbwp/200.html

Does Joint Modelling of the World Economy Pay Off? Evaluating Global Forecasts from a Bayesian GVAR

Author

Listed:
  • Jonas Dovern

    (Alfred-Weber-Institute for Economics, Heidelberg University)

  • Martin Feldkircher

    (Oesterreichische Nationalbank, Foreign Research Division)

  • Florian Huber

    (Vienna University of Economics and Business (WU))

Abstract

We analyze how modeling international dependencies improves forecasts for the global economy based on a Bayesian GVAR with SSVS prior and stochastic volatility. To analyze the source of performance gains, we decompose the predictive joint density into its marginals and a copula term capturing the dependence structure across countries. The GVAR outperforms forecasts based on country-specific models. This performance is solely driven by superior predictions for the dependence structure across countries, whereas the GVAR does not yield better predictive marginal densities. The relative performance gains of the GVAR model are particularly pronounced during volatile periods and for emerging economies.

Suggested Citation

  • Jonas Dovern & Martin Feldkircher & Florian Huber, 2015. "Does Joint Modelling of the World Economy Pay Off? Evaluating Global Forecasts from a Bayesian GVAR," Working Papers 200, Oesterreichische Nationalbank (Austrian Central Bank).
  • Handle: RePEc:onb:oenbwp:200
    as

    Download full text from publisher

    File URL: https://www.oenb.at/dam/jcr:eaf839af-342e-428f-842f-f25d4aab71b7/WP200_screen.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huber, Florian, 2016. "Density forecasting using Bayesian global vector autoregressions with stochastic volatility," International Journal of Forecasting, Elsevier, vol. 32(3), pages 818-837.
    2. Georgiadis, Georgios, 2017. "To bi, or not to bi? Differences between spillover estimates from bilateral and multilateral multi-country models," Journal of International Economics, Elsevier, vol. 107(C), pages 1-18.
    3. Vuković, Darko B. & Frömmel, Michael & Vigne, Samuel A. & Zinovev, Vyacheslav, 2025. "Spillovers between cryptocurrencies and financial markets in a global framework," Journal of International Money and Finance, Elsevier, vol. 150(C).
    4. Maximilian Böck & Martin Feldkircher & Florian Huber, 2020. "BGVAR: Bayesian Global Vector Autoregressions with Shrinkage Priors in R," Globalization Institute Working Papers 395, Federal Reserve Bank of Dallas.
    5. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    6. Georgiadis, Georgios, 2015. "To bi, or not to bi? Differences in spillover estimates from bilateral and multilateral multi-country models," Working Paper Series 1868, European Central Bank.
    7. Cañon, Carlos & Gerba, Eddie & Pambira, Alberto & Stoja, Evarist, 2023. "An unconventional FX tail risk story," LSE Research Online Documents on Economics 120052, London School of Economics and Political Science, LSE Library.
    8. Beckmann, Joscha & Czudaj, Robert L., 2025. "Fundamental determinants of exchange rate expectations," International Journal of Forecasting, Elsevier, vol. 41(3), pages 1003-1021.
    9. Martin Feldkircher & Gabriele Tondl, 2020. "Global Factors Driving Inflation and Monetary Policy: A Global VAR Assessment," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 26(3), pages 225-247, August.
    10. Yu Bai & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Macroeconomic forecasting in a multi‐country context," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1230-1255, September.
    11. Fadejeva, Ludmila & Feldkircher, Martin & Reininger, Thomas, 2017. "International spillovers from Euro area and US credit and demand shocks: A focus on emerging Europe," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 1-25.
    12. Samuel F. Onipede & Nafiu A. Bashir & Jamaladeen Abubakar, 2023. "Small open economies and external shocks: an application of Bayesian global vector autoregression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1673-1699, April.
    13. Dovern, Jonas & Huber, Florian, 2015. "Global prediction of recessions," Economics Letters, Elsevier, vol. 133(C), pages 81-84.
    14. repec:rim:rimwps:23-12 is not listed on IDEAS
    15. Deniz Sevinc & Edgar Mata Flores, 2021. "Macroeconomic and financial implications of multi‐dimensional interdependencies between OECD countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 741-776, January.
    16. Markus Eller & Martin Feldkircher & Florian Huber, 2017. "How would a fiscal shock in Germany affect other European countries? Evidence from a Bayesian GVAR model with sign restrictions," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 1, pages 54-77.
    17. Feldkircher, Martin & Gruber, Thomas & Huber, Florian, 2017. "Spreading the word or reducing the term spread? Assessing spillovers from euro area monetary policy," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168111, Verein für Socialpolitik / German Economic Association.
    18. Dovern, Jonas & Manner, Hans, 2016. "Robust Evaluation of Multivariate Density Forecasts," VfS Annual Conference 2016 (Augsburg): Demographic Change 145547, Verein für Socialpolitik / German Economic Association.
    19. Jesús Crespo Cuaresma & Martin Feldkircher & Florian Huber, 2016. "Forecasting with Global Vector Autoregressive Models: a Bayesian Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1371-1391, November.
    20. Gupta, Rangan & Huber, Florian & Piribauer, Philipp, 2020. "Predicting international equity returns: Evidence from time-varying parameter vector autoregressive models," International Review of Financial Analysis, Elsevier, vol. 68(C).
    21. George N. Apostolakis & Nikolaos Giannellis & Athanasios P. Papadopoulos, 2023. "Macro‐financial effects of monetary policy easing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 715-738, April.
    22. Carlos Cañon & Eddie Gerba & Alberto Pambira & Evarist Stoja, 2023. "An Unconventional FX Tail Risk Story," CESifo Working Paper Series 10629, CESifo.
    23. Georgios Georgiadis, 2016. "To bi, or not to bi? Differences in Spillover Estimates from Bilateral and Multilateral Multi-country Models," EcoMod2016 9145, EcoMod.
    24. Dovern, Jonas & Manner, Hans, 2016. "Order Invariant Evaluation of Multivariate Density Forecasts," Working Papers 0608, University of Heidelberg, Department of Economics.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:onb:oenbwp:200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Markus Knell (email available below). General contact details of provider: https://edirc.repec.org/data/oenbbat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.