Bitcoin Network Mechanics: Forecasting the BTC Closing Price Using Vector Auto-Regression Models Based on Endogenous and Exogenous Feature Variables
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Paolo Pagnottoni & Thomas Dimpfl, 2019.
"Price discovery on Bitcoin markets,"
Digital Finance, Springer, vol. 1(1), pages 139-161, November.
- Pagnottoni, Paolo & Baur, Dirk G. & Dimpfl, Thomas, 2018. "Price Discovery on Bitcoin Markets," IRTG 1792 Discussion Papers 2018-014, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Luisanna Cocco & Michele Marchesi, 2016.
"Modeling and Simulation of the Economics of Mining in the Bitcoin Market,"
PLOS ONE, Public Library of Science, vol. 11(10), pages 1-31, October.
- Luisanna Cocco & Michele Marchesi, 2016. "Modeling and Simulation of the Economics of Mining in the Bitcoin Market," Papers 1605.01354, arXiv.org.
- Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013.
"Forecasting the Price of Oil,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507,
Elsevier.
- Ron Alquist & Lutz Kilian & Robert Vigfusson, 2011. "Forecasting the Price of Oil," Staff Working Papers 11-15, Bank of Canada.
- Ron Alquist & Lutz Kilian & Robert J. Vigfusson, 2011. "Forecasting the price of oil," International Finance Discussion Papers 1022, Board of Governors of the Federal Reserve System (U.S.).
- Kilian, Lutz & Alquist, Ron & Vigfusson, Robert J., 2011. "Forecasting the Price of Oil," CEPR Discussion Papers 8388, C.E.P.R. Discussion Papers.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018.
"Bayesian Vector Autoregressions,"
The Warwick Economics Research Paper Series (TWERPS)
1159, University of Warwick, Department of Economics.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Documents de Travail de l'OFCE 2018-18, Observatoire Francais des Conjonctures Economiques (OFCE).
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Working Papers hal-03458277, HAL.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian Vector Autoregressions," Discussion Papers 1808, Centre for Macroeconomics (CFM).
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," LSE Research Online Documents on Economics 87393, London School of Economics and Political Science, LSE Library.
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," SciencePo Working papers Main hal-03458277, HAL.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," Bank of England working papers 756, Bank of England.
- Koop, Gary & Korobilis, Dimitris, 2010.
"Bayesian Multivariate Time Series Methods for Empirical Macroeconomics,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
- Koop, Gary & Korobilis, Dimitris, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," MPRA Paper 20125, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Working Paper series 47_09, Rimini Centre for Economic Analysis.
- Carriero, A. & Kapetanios, G. & Marcellino, M., 2009.
"Forecasting exchange rates with a large Bayesian VAR,"
International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," Working Papers 634, Queen Mary University of London, School of Economics and Finance.
- A. Carriero & G. Kapetanios & M. Marcellino, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," Economics Working Papers ECO2008/33, European University Institute.
- Marcellino, Massimiliano & Kapetanios, George & Carriero, Andrea, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," CEPR Discussion Papers 7008, C.E.P.R. Discussion Papers.
- Christopher A. Sims, 1993.
"A Nine-Variable Probabilistic Macroeconomic Forecasting Model,"
NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 179-212,
National Bureau of Economic Research, Inc.
- Christopher A. Sims, 1989. "A nine variable probabilistic macroeconomic forecasting model," Discussion Paper / Institute for Empirical Macroeconomics 14, Federal Reserve Bank of Minneapolis.
- Christopher A. Sims, 1992. "A Nine Variable Probabilistic Macroeconomic Forecasting Model," Cowles Foundation Discussion Papers 1034, Cowles Foundation for Research in Economics, Yale University.
- Rick Bohte & Luca Rossini, 2019.
"Comparing the Forecasting of Cryptocurrencies by Bayesian Time-Varying Volatility Models,"
JRFM, MDPI, vol. 12(3), pages 1-18, September.
- Rick Bohte & Luca Rossini, 2019. "Comparing the forecasting of cryptocurrencies by Bayesian time-varying volatility models," Papers 1909.06599, arXiv.org.
- Kuschnig, Nikolas & Vashold, Lukas, 2019. "BVAR: Bayesian Vector Autoregressions with Hierarchical Prior Selection in R," Department of Economics Working Paper Series 296, WU Vienna University of Economics and Business.
- Takatoshi Ito & Kiyotaka Sato, 2006.
"Exchange Rate Changes and Inflation in Post-Crisis Asian Economies: VAR Analysis of the Exchange Rate Pass-Through,"
Discussion papers
06018, Research Institute of Economy, Trade and Industry (RIETI).
- Takatoshi Ito & Kiyotaka Sato, 2006. "Exchange Rate Changes and Inflation in Post-Crisis Asian Economies: VAR Analysis of the Exchange Rate Pass-Through," CIRJE F-Series CIRJE-F-406, CIRJE, Faculty of Economics, University of Tokyo.
- Takatoshi Ito & Kiyotaka Sato, 2006. "Exchange Rate Changes and Inflation in Post-Crisis Asian Economies: VAR Analysis of the Exchange Rate Pass-Through," NBER Working Papers 12395, National Bureau of Economic Research, Inc.
- Koray, Faik & Lastrapes, William D, 1989. "Real Exchange Rate Volatility and U.S. Bilateral Trade: A VAR Approach," The Review of Economics and Statistics, MIT Press, vol. 71(4), pages 708-712, November.
- Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
- Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
- repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
- Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ozdamar, Melisa & Sensoy, Ahmet & Akdeniz, Levent, 2022. "Retail vs institutional investor attention in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
- Yihang Fu & Mingyu Zhou & Luyao Zhang, 2024. "DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting," Papers 2405.00522, arXiv.org.
- Jong-Min Kim & Chanho Cho & Chulhee Jun, 2022. "Forecasting the Price of the Cryptocurrency Using Linear and Nonlinear Error Correction Model," JRFM, MDPI, vol. 15(2), pages 1-10, February.
- Stephen Chan & Jeffrey Chu & Yuanyuan Zhang & Saralees Nadarajah, 2020. "Blockchain and Cryptocurrencies," JRFM, MDPI, vol. 13(10), pages 1-3, September.
- Manlika Ratchagit & Honglei Xu, 2022. "A Two-Delay Combination Model for Stock Price Prediction," Mathematics, MDPI, vol. 10(19), pages 1-21, September.
- Zi Ye & Yinxu Wu & Hui Chen & Yi Pan & Qingshan Jiang, 2022. "A Stacking Ensemble Deep Learning Model for Bitcoin Price Prediction Using Twitter Comments on Bitcoin," Mathematics, MDPI, vol. 10(8), pages 1-21, April.
- Uddin, Ajim & Tao, Xinyuan & Yu, Dantong, 2023. "Attention based dynamic graph neural network for asset pricing," Global Finance Journal, Elsevier, vol. 58(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Dimitrios P. Louzis, 2017. "Macroeconomic and credit forecasts during the Greek crisis using Bayesian VARs," Empirical Economics, Springer, vol. 53(2), pages 569-598, September.
- Karlsson, Sune, 2013.
"Forecasting with Bayesian Vector Autoregression,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897,
Elsevier.
- Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018.
"Bayesian Vector Autoregressions,"
The Warwick Economics Research Paper Series (TWERPS)
1159, University of Warwick, Department of Economics.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," LSE Research Online Documents on Economics 87393, London School of Economics and Political Science, LSE Library.
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Working Papers hal-03458277, HAL.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian Vector Autoregressions," Discussion Papers 1808, Centre for Macroeconomics (CFM).
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," SciencePo Working papers Main hal-03458277, HAL.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," Bank of England working papers 756, Bank of England.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Documents de Travail de l'OFCE 2018-18, Observatoire Francais des Conjonctures Economiques (OFCE).
- Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
- Demeshev, Boris & Malakhovskaya, Oxana, 2016. "BVAR mapping," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 43, pages 118-141.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022.
"Nowcasting with large Bayesian vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2020. "Nowcasting with large Bayesian vector autoregressions," Working Paper Series 2453, European Central Bank.
- Lenza, Michele & Cimadomo, Jacopo & Giannone, Domenico & Monti, Francesca & Sokol, Andrej, 2021. "Nowcasting with Large Bayesian Vector Autoregressions," CEPR Discussion Papers 15854, C.E.P.R. Discussion Papers.
- Ronald A. Ratti & Joaquin L. Vespignani, 2015. "What drives the global interest rate," Globalization Institute Working Papers 241, Federal Reserve Bank of Dallas.
- Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019.
"Bayesian compressed vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 2016_09, Business School - Economics, University of Glasgow.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103, Brandeis University, Department of Economics and International Business School.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2017. "Bayesian Compressed Vector Autoregressions," Working Paper series 17-32, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103R, Brandeis University, Department of Economics and International Business School, revised Apr 2016.
- Ratti, Ronald A. & Vespignani, Joaquin L., 2016.
"Oil prices and global factor macroeconomic variables,"
Energy Economics, Elsevier, vol. 59(C), pages 198-212.
- Ratti, Ronald & Vespignani, Joaquin, 2015. "Oil prices and global factor macroeconomic variables," Working Papers 2015-08, University of Tasmania, Tasmanian School of Business and Economics.
- Joshua C. C. Chan, 2019. "Large Bayesian vector autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Ratti, Ronald A. & Vespignani, Joaquin L., 2014.
"Oil prices and the economy: A global perspective,"
MPRA Paper
59407, University Library of Munich, Germany.
- Ronald A. Ratti & Joaquin L. Vespignani, 2014. "Oil prices and the economy: A global perspective," CAMA Working Papers 2014-41, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
- Ratti, Ronald A. & Vespignani, Joaquin L., 2015.
"Commodity prices and BRIC and G3 liquidity: A SFAVEC approach,"
Journal of Banking & Finance, Elsevier, vol. 53(C), pages 18-33.
- Ratti, Ronald A & Vespignani, Joaquin L., 2013. "Commodity Prices and BRIC and G3 Liquidity: A SFAVEC Approach," Working Papers 17096, University of Tasmania, Tasmanian School of Business and Economics, revised 09 Jan 2013.
- Ronald A. Ratti & Joaquin L. Vespignani, 2014. "Commodity Prices and BRIC and G3 Liquidity: A SFAVEC Approach," CAMA Working Papers 2014-13, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Ratti, Ronald A. & Vespignani, Joaquin L., 2013. "Commodity Prices and BRIC and G3 Liquidity: A SFAVEC Approach," MPRA Paper 49324, University Library of Munich, Germany.
- Gary Koop, 2012.
"Using VARs and TVP-VARs with Many Macroeconomic Variables,"
Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(3), pages 143-167, September.
- Gary, Koop, 2013. "Using VARs and TVP-VARs with Many Macroeconomic Variables," SIRE Discussion Papers 2013-35, Scottish Institute for Research in Economics (SIRE).
- Gary Koop, 2013. "Using VARs and TVP-VARs with Many Macroeconomic Variables," Working Papers 1303, University of Strathclyde Business School, Department of Economics.
- Dimitris P. Louzis, 2014. "Macroeconomic and credit forecasts in a small economy during crisis: A large Bayesian VAR approach," Working Papers 184, Bank of Greece.
- repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
- David Alan Peel & Pantelis Promponas, 2016. "Forecasting the nominal exchange rate movements in a changing world. The case of the U.S. and the U.K," Working Papers 144439514, Lancaster University Management School, Economics Department.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Rick Bohte & Luca Rossini, 2019.
"Comparing the Forecasting of Cryptocurrencies by Bayesian Time-Varying Volatility Models,"
JRFM, MDPI, vol. 12(3), pages 1-18, September.
- Rick Bohte & Luca Rossini, 2019. "Comparing the forecasting of cryptocurrencies by Bayesian time-varying volatility models," Papers 1909.06599, arXiv.org.
- Tomasz Wozniak, 2016. "Rare Events and Risk Perception: Evidence from Fukushima Accident," Department of Economics - Working Papers Series 2021, The University of Melbourne.
- Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013.
"L’apport de la représentation VAR de Christopher A. Sims à la science économique,"
L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
- Jean-Baptiste Gossé & Cyriac Guillaumin, 2013. "L’apport de la représentation VAR de Chrisropher A. Sims à la science économique," Post-Print halshs-01075741, HAL.
More about this item
Keywords
Bitcoin; blockchain; autoregression; time-series analysis; simulation; predictive modes; endogenous; exogenous variables;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:13:y:2020:i:9:p:189-:d:401211. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.