IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0164603.html
   My bibliography  Save this article

Modeling and Simulation of the Economics of Mining in the Bitcoin Market

Author

Listed:
  • Luisanna Cocco
  • Michele Marchesi

Abstract

In January 3, 2009, Satoshi Nakamoto gave rise to the “Bitcoin Blockchain”, creating the first block of the chain hashing on his computer’s central processing unit (CPU). Since then, the hash calculations to mine Bitcoin have been getting more and more complex, and consequently the mining hardware evolved to adapt to this increasing difficulty. Three generations of mining hardware have followed the CPU’s generation. They are GPU’s, FPGA’s and ASIC’s generations. This work presents an agent-based artificial market model of the Bitcoin mining process and of the Bitcoin transactions. The goal of this work is to model the economy of the mining process, starting from GPU’s generation, the first with economic significance. The model reproduces some “stylized facts” found in real-time price series and some core aspects of the mining business. In particular, the computational experiments performed can reproduce the unit root property, the fat tail phenomenon and the volatility clustering of Bitcoin price series. In addition, under proper assumptions, they can reproduce the generation of Bitcoins, the hashing capability, the power consumption, and the mining hardware and electrical energy expenditures of the Bitcoin network.

Suggested Citation

  • Luisanna Cocco & Michele Marchesi, 2016. "Modeling and Simulation of the Economics of Mining in the Bitcoin Market," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-31, October.
  • Handle: RePEc:plo:pone00:0164603
    DOI: 10.1371/journal.pone.0164603
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164603
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164603&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0164603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
    2. Giovanni Dosi & Giorgio Fagiolo & Andrea Roventini, 2009. "The microfoundations of business cycles: an evolutionary, multi-agent model," Springer Books, in: Uwe Cantner & Jean-Luc Gaffard & Lionel Nesta (ed.), Schumpeterian Perspectives on Innovation, Competition and Growth, pages 161-180, Springer.
    3. Cincotti, Silvano & M. Focardi, Sergio & Marchesi, Michele & Raberto, Marco, 2003. "Who wins? Study of long-run trader survival in an artificial stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 227-233.
    4. Tedeschi, Gabriele & Iori, Giulia & Gallegati, Mauro, 2012. "Herding effects in order driven markets: The rise and fall of gurus," Journal of Economic Behavior & Organization, Elsevier, vol. 81(1), pages 82-96.
    5. Thomas Lux, 2001. "The limiting extremal behaviour of speculative returns: an analysis of intra-daily data from the Frankfurt Stock Exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 11(3), pages 299-315.
    6. Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," Post-Print hal-01277584, HAL.
    7. Dosi, Giovanni & Fagiolo, Giorgio & Roventini, Andrea, 2010. "Schumpeter meeting Keynes: A policy-friendly model of endogenous growth and business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1748-1767, September.
    8. Lengnick, Matthias, 2013. "Agent-based macroeconomics: A baseline model," Journal of Economic Behavior & Organization, Elsevier, vol. 86(C), pages 102-120.
    9. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    10. Juthasit Rohitratana & Jorn Altmann, 2012. "Impact of Pricing Schemes on a Market for Software-as-a-Service and Perpetual Software," TEMEP Discussion Papers 201288, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2012.
    11. Liu, Xinghua & Gregor, Shirley & Yang, Jianmei, 2008. "The effects of behavioral and structural assumptions in artificial stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2535-2546.
    12. A. Chakraborti & I. Muni-Toke & M. Patriarca & F. Abergel, 2011. "Econophysics Review : II. Agent-based models," Post-Print hal-03332946, HAL.
    13. Verma, Rahul & Verma, Priti, 2007. "Noise trading and stock market volatility," Journal of Multinational Financial Management, Elsevier, vol. 17(3), pages 231-243, July.
    14. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    15. Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003. "Traders' Long-Run Wealth in an Artificial Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
    16. Frank Westerhoff & Reiner Franke, 2012. "Converse trading strategies, intrinsic noise and the stylized facts of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 425-436, June.
    17. David Garcia & Claudio Tessone & Pavlin Mavrodiev & Nicolas Perony, "undated". "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Working Papers ETH-RC-14-001, ETH Zurich, Chair of Systems Design.
    18. Marco Raberto & Silvano Cincotti & Christian Dose & Sergio M. Focardi & Michele Marchesi, 2005. "Price Formation in an Artificial Market: Limit Order Book Versus Matching of Supply and Demand," Lecture Notes in Economics and Mathematical Systems, in: Thomas Lux & Eleni Samanidou & Stefan Reitz (ed.), Nonlinear Dynamics and Heterogeneous Interacting Agents, pages 305-315, Springer.
    19. Amini, Mehdi & Wakolbinger, Tina & Racer, Michael & Nejad, Mohammad G., 2012. "Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach," European Journal of Operational Research, Elsevier, vol. 216(2), pages 301-311.
    20. Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," Papers 1503.06704, arXiv.org, revised Oct 2015.
    21. Ladislav Kristoufek, 2015. "What Are the Main Drivers of the Bitcoin Price? Evidence from Wavelet Coherence Analysis," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-15, April.
    22. Dosi, Giovanni & Fagiolo, Giorgio & Napoletano, Mauro & Roventini, Andrea, 2013. "Income distribution, credit and fiscal policies in an agent-based Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1598-1625.
    23. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    24. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    25. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    26. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    27. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    28. Dick, Christian D. & Menkhoff, Lukas, 2013. "Exchange rate expectations of chartists and fundamentalists," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1362-1383.
    29. Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
    30. William J. Luther, 2016. "Cryptocurrencies, Network Effects, And Switching Costs," Contemporary Economic Policy, Western Economic Association International, vol. 34(3), pages 553-571, July.
    31. Tijana Radivojević & Jonatha Anselmi & Enrico Scalas, 2014. "Ergodic Transition in a Simple Model of the Continuous Double Auction," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-5, February.
    32. Stefan Bornholdt & Kim Sneppen, 2014. "Do Bitcoins make the world go round? On the dynamics of competing crypto-currencies," Papers 1403.6378, arXiv.org.
    33. Raberto, Marco & Cincotti, Silvano & Focardi, Sergio M. & Marchesi, Michele, 2001. "Agent-based simulation of a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 319-327.
    34. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    35. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Fratrič & Giovanni Sileno & Sander Klous & Tom Engers, 2022. "Manipulation of the Bitcoin market: an agent-based study," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-29, December.
    2. Pavel Ciaian & d'Artis Kancs & Miroslava Rajcaniova, 2021. "Interdependencies between Mining Costs, Mining Rewards and Blockchain Security," Annals of Economics and Finance, Society for AEF, vol. 22(1), pages 25-62, May.
    3. Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2022. "Machine Learning the Carbon Footprint of Bitcoin Mining," JRFM, MDPI, vol. 15(2), pages 1-30, February.
    4. Malfuzi, A. & Mehr, A.S. & Rosen, Marc A. & Alharthi, M. & Kurilova, A.A., 2020. "Economic viability of bitcoin mining using a renewable-based SOFC power system to supply the electrical power demand," Energy, Elsevier, vol. 203(C).
    5. Luisanna Cocco & Andrea Pinna & Michele Marchesi, 2017. "Banking on Blockchain: Costs Savings Thanks to the Blockchain Technology," Future Internet, MDPI, vol. 9(3), pages 1-20, June.
    6. Luisanna Cocco & Roberto Tonelli & Michele Marchesi, 2019. "An Agent Based Model to Analyze the Bitcoin Mining Activity and a Comparison with the Gold Mining Industry," Future Internet, MDPI, vol. 11(1), pages 1-12, January.
    7. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    8. Ahmed Ibrahim & Rasha Kashef & Menglu Li & Esteban Valencia & Eric Huang, 2020. "Bitcoin Network Mechanics: Forecasting the BTC Closing Price Using Vector Auto-Regression Models Based on Endogenous and Exogenous Feature Variables," JRFM, MDPI, vol. 13(9), pages 1-21, August.
    9. Zura Kakushadze & Jim Kyung-Soo Liew, 2018. "CryptoRuble: From Russia with Love," Papers 1801.05760, arXiv.org.
    10. Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
    11. Marten Risius & Kai Spohrer, 2017. "A Blockchain Research Framework," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(6), pages 385-409, December.
    12. Sharif, Arshian & Brahim, Mariem & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "Analysis of the spillover effects between green economy, clean and dirty cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
    13. Delgado-Mohatar, Oscar & Felis-Rota, Marta & Fernández-Herraiz, Carlos, 2019. "The Bitcoin mining breakdown: Is mining still profitable?," Economics Letters, Elsevier, vol. 184(C).
    14. Gabriel Mathy, 2023. "Eliminating Environmental Costs to Proof-of-Work-Based Cryptocurrencies: A Proposal," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 49(2), pages 206-220, April.
    15. Francisco Javier García-Corral & José Antonio Cordero-García & Jaime de Pablo-Valenciano & Juan Uribe-Toril, 2022. "A bibliometric review of cryptocurrencies: how have they grown?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    16. E. Nadyrova & Е. Надырова, 2018. "Анализ рисков криптовалют и способы их минимизации в современных рыночных условиях // Analysis of Cryptocurrency Risks and Methods of their Mitigation in Contemporary Market Conditions," Review of Business and Economics Studies // Review of Business and Economics Studies, Финансовый Университет // Financial University, vol. 6(3), pages 65-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luisanna Cocco & Giulio Concas & Michele Marchesi, 2017. "Using an artificial financial market for studying a cryptocurrency market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 345-365, July.
    2. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    3. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    4. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    5. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    6. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    7. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    8. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    9. Begušić, Stjepan & Kostanjčar, Zvonko & Eugene Stanley, H. & Podobnik, Boris, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 400-406.
    10. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    11. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    12. Misha Perepelitsa & Ilya Timofeyev, 2022. "Self-sustained price bubbles driven by digital currency innovations and adaptive market behavior," SN Business & Economics, Springer, vol. 2(3), pages 1-15, March.
    13. Nino Antulov-Fantulin & Dijana Tolic & Matija Piskorec & Zhang Ce & Irena Vodenska, 2018. "Inferring short-term volatility indicators from Bitcoin blockchain," Papers 1809.07856, arXiv.org.
    14. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    15. Ivan Jericevich & Murray McKechnie & Tim Gebbie, 2021. "Calibrating an adaptive Farmer-Joshi agent-based model for financial markets," Papers 2104.09863, arXiv.org.
    16. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    17. Pietro DeLellis & Anna DiMeglio & Franco Garofalo & Francesco Lo Iudice, 2017. "The evolving cobweb of relations among partially rational investors," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    18. Bernardo A. Furtado & Miguel A. Fuentes & Claudio J. Tessone, 2019. "Policy Modeling and Applications: State-of-the-Art and Perspectives," Complexity, Hindawi, vol. 2019, pages 1-11, February.
    19. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
    20. Steven Haryanto & Athor Subroto & Maria Ulpah, 2020. "Disposition effect and herding behavior in the cryptocurrency market," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 115-132, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0164603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.