IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1605.01354.html
   My bibliography  Save this paper

Modeling and Simulation of the Economics of Mining in the Bitcoin Market

Author

Listed:
  • Luisanna Cocco
  • Michele Marchesi

Abstract

In January 3, 2009, Satoshi Nakamoto gave rise to the "Bitcoin Block Chain" creating the first block of the chain hashing on his computers central processing unit (CPU). Since then, the hash calculations to mine Bitcoin have been getting more and more complex, and consequently the mining hardware evolved to adapt to this increasing difficulty. Three generations of mining hardware have followed the CPU's generation. They are GPU's, FPGA's and ASIC's generations. This work presents an agent based artificial market model of the Bitcoin mining process and of the Bitcoin transactions. The goal of this work is to model the economy of the mining process, starting from GPU's generation, the first with economic significance. The model reproduces some "stylized facts" found in real time price series and some core aspects of the mining business. In particular, the computational experiments performed are able to reproduce the unit root property, the fat tail phenomenon and the volatility clustering of Bitcoin price series. In addition, under proper assumptions, they are able to reproduce the price peak at the end of November 2013, its next fall in April 2014, the generation of Bitcoins, the hashing capability, the power consumption, and the mining hardware and electrical energy expenses of the Bitcoin network.

Suggested Citation

  • Luisanna Cocco & Michele Marchesi, 2016. "Modeling and Simulation of the Economics of Mining in the Bitcoin Market," Papers 1605.01354, arXiv.org.
  • Handle: RePEc:arx:papers:1605.01354
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1605.01354
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
    2. Giovanni Dosi & Giorgio Fagiolo & Andrea Roventini, 2009. "The microfoundations of business cycles: an evolutionary, multi-agent model," Springer Books, in: Uwe Cantner & Jean-Luc Gaffard & Lionel Nesta (ed.), Schumpeterian Perspectives on Innovation, Competition and Growth, pages 161-180, Springer.
    3. Cincotti, Silvano & M. Focardi, Sergio & Marchesi, Michele & Raberto, Marco, 2003. "Who wins? Study of long-run trader survival in an artificial stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 227-233.
    4. Dosi, Giovanni & Fagiolo, Giorgio & Roventini, Andrea, 2010. "Schumpeter meeting Keynes: A policy-friendly model of endogenous growth and business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1748-1767, September.
    5. Lengnick, Matthias, 2013. "Agent-based macroeconomics: A baseline model," Journal of Economic Behavior & Organization, Elsevier, vol. 86(C), pages 102-120.
    6. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    7. Juthasit Rohitratana & Jorn Altmann, 2012. "Impact of Pricing Schemes on a Market for Software-as-a-Service and Perpetual Software," TEMEP Discussion Papers 201288, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2012.
    8. Liu, Xinghua & Gregor, Shirley & Yang, Jianmei, 2008. "The effects of behavioral and structural assumptions in artificial stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2535-2546.
    9. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    10. Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003. "Traders' Long-Run Wealth in an Artificial Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
    11. Frank Westerhoff & Reiner Franke, 2012. "Converse trading strategies, intrinsic noise and the stylized facts of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 425-436, June.
    12. David Garcia & Claudio Tessone & Pavlin Mavrodiev & Nicolas Perony, "undated". "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Working Papers ETH-RC-14-001, ETH Zurich, Chair of Systems Design.
    13. Marco Raberto & Silvano Cincotti & Christian Dose & Sergio M. Focardi & Michele Marchesi, 2005. "Price Formation in an Artificial Market: Limit Order Book Versus Matching of Supply and Demand," Lecture Notes in Economics and Mathematical Systems, in: Thomas Lux & Eleni Samanidou & Stefan Reitz (ed.), Nonlinear Dynamics and Heterogeneous Interacting Agents, pages 305-315, Springer.
    14. Amini, Mehdi & Wakolbinger, Tina & Racer, Michael & Nejad, Mohammad G., 2012. "Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach," European Journal of Operational Research, Elsevier, vol. 216(2), pages 301-311.
    15. Ladislav Kristoufek, 2015. "What Are the Main Drivers of the Bitcoin Price? Evidence from Wavelet Coherence Analysis," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-15, April.
    16. Dosi, Giovanni & Fagiolo, Giorgio & Napoletano, Mauro & Roventini, Andrea, 2013. "Income distribution, credit and fiscal policies in an agent-based Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1598-1625.
    17. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    18. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    19. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    20. Dick, Christian D. & Menkhoff, Lukas, 2013. "Exchange rate expectations of chartists and fundamentalists," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1362-1383.
    21. William J. Luther, 2016. "Cryptocurrencies, Network Effects, And Switching Costs," Contemporary Economic Policy, Western Economic Association International, vol. 34(3), pages 553-571, July.
    22. Stefan Bornholdt & Kim Sneppen, 2014. "Do Bitcoins make the world go round? On the dynamics of competing crypto-currencies," Papers 1403.6378, arXiv.org.
    23. Raberto, Marco & Cincotti, Silvano & Focardi, Sergio M. & Marchesi, Michele, 2001. "Agent-based simulation of a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 319-327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Fratrič & Giovanni Sileno & Sander Klous & Tom Engers, 2022. "Manipulation of the Bitcoin market: an agent-based study," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-29, December.
    2. Pavel Ciaian & d'Artis Kancs & Miroslava Rajcaniova, 2021. "Interdependencies between Mining Costs, Mining Rewards and Blockchain Security," Annals of Economics and Finance, Society for AEF, vol. 22(1), pages 25-62, May.
    3. Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2022. "Machine Learning the Carbon Footprint of Bitcoin Mining," JRFM, MDPI, vol. 15(2), pages 1-30, February.
    4. José Parra-Moyano & Gregor Reich & Karl Schmedders, 2024. "A Note on the Non-proportionality of Winning Probabilities in Bitcoin," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1697-1714, September.
    5. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    6. Ahmed Ibrahim & Rasha Kashef & Menglu Li & Esteban Valencia & Eric Huang, 2020. "Bitcoin Network Mechanics: Forecasting the BTC Closing Price Using Vector Auto-Regression Models Based on Endogenous and Exogenous Feature Variables," JRFM, MDPI, vol. 13(9), pages 1-21, August.
    7. Malfuzi, A. & Mehr, A.S. & Rosen, Marc A. & Alharthi, M. & Kurilova, A.A., 2020. "Economic viability of bitcoin mining using a renewable-based SOFC power system to supply the electrical power demand," Energy, Elsevier, vol. 203(C).
    8. Zura Kakushadze & Jim Kyung-Soo Liew, 2018. "CryptoRuble: From Russia with Love," Papers 1801.05760, arXiv.org.
    9. Gabriel Mathy, 2023. "Eliminating Environmental Costs to Proof-of-Work-Based Cryptocurrencies: A Proposal," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 49(2), pages 206-220, April.
    10. E. Nadyrova & Е. Надырова, 2018. "Анализ рисков криптовалют и способы их минимизации в современных рыночных условиях // Analysis of Cryptocurrency Risks and Methods of their Mitigation in Contemporary Market Conditions," Review of Business and Economics Studies // Review of Business and Economics Studies, Финансовый Университет // Financial University, vol. 6(3), pages 65-78.
    11. Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
    12. Luisanna Cocco & Andrea Pinna & Michele Marchesi, 2017. "Banking on Blockchain: Costs Savings Thanks to the Blockchain Technology," Future Internet, MDPI, vol. 9(3), pages 1-20, June.
    13. Sharif, Arshian & Brahim, Mariem & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "Analysis of the spillover effects between green economy, clean and dirty cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
    14. Delgado-Mohatar, Oscar & Felis-Rota, Marta & Fernández-Herraiz, Carlos, 2019. "The Bitcoin mining breakdown: Is mining still profitable?," Economics Letters, Elsevier, vol. 184(C).
    15. Luisanna Cocco & Roberto Tonelli & Michele Marchesi, 2019. "An Agent Based Model to Analyze the Bitcoin Mining Activity and a Comparison with the Gold Mining Industry," Future Internet, MDPI, vol. 11(1), pages 1-12, January.
    16. Marten Risius & Kai Spohrer, 2017. "A Blockchain Research Framework," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(6), pages 385-409, December.
    17. Francisco Javier García-Corral & José Antonio Cordero-García & Jaime de Pablo-Valenciano & Juan Uribe-Toril, 2022. "A bibliometric review of cryptocurrencies: how have they grown?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    18. Alaminos, David & Salas-Compás, M. Belén & Fernández-Gámez, Manuel Á., 2024. "Can Bitcoin trigger speculative pressures on the US Dollar? A novel ARIMA-EGARCH-Wavelet Neural Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luisanna Cocco & Giulio Concas & Michele Marchesi, 2017. "Using an artificial financial market for studying a cryptocurrency market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 345-365, July.
    2. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    3. Bernardo A. Furtado & Miguel A. Fuentes & Claudio J. Tessone, 2019. "Policy Modeling and Applications: State-of-the-Art and Perspectives," Complexity, Hindawi, vol. 2019, pages 1-11, February.
    4. Luisanna Cocco & Michele Marchesi, 2016. "Modeling and Simulation of the Economics of Mining in the Bitcoin Market," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-31, October.
    5. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    6. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    7. Dosi, Giovanni & Fagiolo, Giorgio & Napoletano, Mauro & Roventini, Andrea & Treibich, Tania, 2015. "Fiscal and monetary policies in complex evolving economies," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 166-189.
    8. Furtado, Bernardo Alves & Eberhardt, Isaque Daniel Rocha, 2015. "Modelo espacial simples da economia: uma proposta teórico-metodológica [A simple spatial economic model: a proposal]," MPRA Paper 67005, University Library of Munich, Germany.
    9. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    10. Bruno Beaufils & Olivier Brandouy & Julien Derveeuw & Philippe Mathieu, 2007. "Testing double auction as a component within a generic market model architecture," Post-Print hal-00826143, HAL.
    11. Roberto Veneziani & Luca Zamparelli & Corrado Di Guilmi, 2017. "The Agent-Based Approach To Post Keynesian Macro-Modeling," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1183-1203, December.
    12. Matthias Lengnick & Hans-Werner Wohltmann, 2013. "Agent-based financial markets and New Keynesian macroeconomics: a synthesis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 1-32, April.
    13. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    14. Biondo, Alessio Emanuele & Mazzarino, Laura & Pluchino, Alessandro, 2024. "Trading strategies and Financial Performances: A simulation approach," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    15. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    16. Özge Dilaver & Robert Calvert Jump & Paul Levine, 2018. "Agent‐Based Macroeconomics And Dynamic Stochastic General Equilibrium Models: Where Do We Go From Here?," Journal of Economic Surveys, Wiley Blackwell, vol. 32(4), pages 1134-1159, September.
    17. Váry, Miklós, 2015. "Piaci alkalmazkodás ragadós árak mellett - Calvo-típusú ármerevség egy ágensalapú modellben [Market adjustment under sticky prices: the price rigidity of a Calvo type in an agent-based model]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(1), pages 48-77.
    18. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    19. Qixuan Luo & Yu Shi & Xuan Zhou & Handong Li, 2021. "Research on the Effects of Institutional Liquidation Strategies on the Market Based on Multi-agent Model," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1025-1049, December.
    20. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1605.01354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.