IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v324y2003i1p227-233.html
   My bibliography  Save this article

Who wins? Study of long-run trader survival in an artificial stock market

Author

Listed:
  • Cincotti, Silvano
  • M. Focardi, Sergio
  • Marchesi, Michele
  • Raberto, Marco

Abstract

We introduce a multi-asset artificial financial market with finite amount of cash and number of stocks. The background trading is characterized by a random trading strategy constrained by the finiteness of resources and by market volatility. Stock price processes exhibit volatility clustering, fat-tailed distribution of returns and reversion to the mean. Three active trading strategies have been introduced and studied in two different market conditions: steady market and growing market with asset inflation. We show that the profitability of each strategy depends both on the periodicity of portfolio reallocation and on the market condition. The best performing strategy is the one that exploits the mean reversion characteristic of asset price processes.

Suggested Citation

  • Cincotti, Silvano & M. Focardi, Sergio & Marchesi, Michele & Raberto, Marco, 2003. "Who wins? Study of long-run trader survival in an artificial stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 227-233.
  • Handle: RePEc:eee:phsmap:v:324:y:2003:i:1:p:227-233
    DOI: 10.1016/S0378-4371(02)01902-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102019027
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)01902-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parkes, David C. & Huberman, Bernardo A., 2001. "Multiagent Cooperative Search for Portfolio Selection," Games and Economic Behavior, Elsevier, vol. 35(1-2), pages 124-165, April.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Raberto, Marco & Cincotti, Silvano & Focardi, Sergio M. & Marchesi, Michele, 2001. "Agent-based simulation of a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 319-327.
    4. Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003. "Traders' Long-Run Wealth in an Artificial Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
    5. Tesfatsion, Leigh S., 2002. "Economic Agents and Markets As Emergent Phenomena," Staff General Research Papers Archive 10033, Iowa State University, Department of Economics.
    6. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    7. De Long, J Bradford & Shleifer, Andrei & Summers, Lawrence H & Waldmann, Robert J, 1991. "The Survival of Noise Traders in Financial Markets," The Journal of Business, University of Chicago Press, vol. 64(1), pages 1-19, January.
    8. Raberto, Marco & Scalas, Enrico & Cuniberti, Gianaurelio & Riani, Massimo, 1999. "Volatility in the Italian stock market: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 148-155.
    9. Blume, Lawrence & Easley, David, 1992. "Evolution and market behavior," Journal of Economic Theory, Elsevier, vol. 58(1), pages 9-40, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derveeuw, Julien & Beaufils, Bruno & Mathieu, Philippe & Brandouy, Olivier, 2007. "Testing double auction as a component within a generic market model architecture," MPRA Paper 4918, University Library of Munich, Germany.
    2. Marco Raberto & Silvano Cincotti, 2004. "Multi-agent modeling and simulation of a sequential monetary production economy," Computing in Economics and Finance 2004 260, Society for Computational Economics.
    3. Luisanna Cocco & Michele Marchesi, 2016. "Modeling and Simulation of the Economics of Mining in the Bitcoin Market," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-31, October.
    4. Linda Ponta & Silvano Cincotti, 2018. "Traders’ Networks of Interactions and Structural Properties of Financial Markets: An Agent-Based Approach," Complexity, Hindawi, vol. 2018, pages 1-9, January.
    5. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    6. Liu, Xinghua & Gregor, Shirley & Yang, Jianmei, 2008. "The effects of behavioral and structural assumptions in artificial stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2535-2546.
    7. Raberto, Marco & Cincotti, Silvano, 2005. "Modeling and simulation of a double auction artificial financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 34-45.
    8. Soufian, Mona & Forbes, William & Hudson, Robert, 2014. "Adapting financial rationality: Is a new paradigm emerging?," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 25(8), pages 724-742.
    9. Thiago W. Alves & Ionut Florescu & George Calhoun & Dragos Bozdog, 2020. "SHIFT: A Highly Realistic Financial Market Simulation Platform," Papers 2002.11158, arXiv.org, revised Aug 2020.
    10. Luisanna Cocco & Giulio Concas & Michele Marchesi, 2017. "Using an artificial financial market for studying a cryptocurrency market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 345-365, July.
    11. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    12. Erika Corona & Sabrina Ecca & Michele Marchesi & Alessio Setzu, 2008. "The Interplay Between Two Stock Markets and a Related Foreign Exchange Market: A Simulation Approach," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 99-119, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Witte, Björn-Christopher, 2012. "Fund managers - Why the best might be the worst: On the evolutionary vigor of risk-seeking behavior," Economics Discussion Papers 2012-20, Kiel Institute for the World Economy (IfW Kiel).
    2. Goykhman, Mikhail, 2017. "Wealth dynamics in a sentiment-driven market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 132-148.
    3. Mikhail Goykhman, 2017. "Wealth dynamics in a sentiment-driven market," Papers 1705.07092, arXiv.org.
    4. Guidolin, Massimo & Ricci, Andrea, 2020. "Arbitrage risk and a sentiment as causes of persistent mispricing: The European evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 1-11.
    5. Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003. "Traders' Long-Run Wealth in an Artificial Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
    6. Massari, Filippo, 2019. "Market selection in large economies: a matter of luck," Theoretical Economics, Econometric Society, vol. 14(2), May.
    7. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    8. Sabrina Ecca & Michele Marchesi & Alessio Setzu, 2008. "Modeling and Simulation of an Artificial Stock Option Market," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 37-53, September.
    9. Calvet, Laurent-Emmanuel & Grandmont, Jean-Michel & Lemaire, Isabelle, 2018. "Aggregation of heterogenous beliefs, asset pricing, and risk sharing in complete financial markets," Research in Economics, Elsevier, vol. 72(1), pages 117-146.
    10. Witte, Björn-Christopher, 2013. "Fundamental traders' ‘tragedy of the commons’: Information costs and other determinants for the survival of experts and noise traders in financial markets," Economic Modelling, Elsevier, vol. 32(C), pages 377-385.
    11. Hirshleifer, David & Subrahmanyam, Avanidhar & Titman, Sheridan, 2006. "Feedback and the success of irrational investors," Journal of Financial Economics, Elsevier, vol. 81(2), pages 311-338, August.
    12. Mannaro, Katiuscia & Marchesi, Michele & Setzu, Alessio, 2008. "Using an artificial financial market for assessing the impact of Tobin-like transaction taxes," Journal of Economic Behavior & Organization, Elsevier, vol. 67(2), pages 445-462, August.
    13. Massimo Guidolin & Andrea Ricci, 2018. "Arbitrage Risk and Investor Sentiment as Causes of Persistent Mispricing: the European Evidence," BAFFI CAREFIN Working Papers 1888, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    14. Emanuela Sciubba, 2006. "The evolution of portfolio rules and the capital asset pricing model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(1), pages 123-150, September.
    15. Anufriev, M. & Bottazzi, G., 2006. "Price and Wealth Dynamics in a Speculative Market with Generic Procedurally Rational Traders," CeNDEF Working Papers 06-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    16. Dindo, Pietro, 2019. "Survival in speculative markets," Journal of Economic Theory, Elsevier, vol. 181(C), pages 1-43.
    17. Guo, Jing & He, Xue Dong, 2017. "Equilibrium asset pricing with Epstein-Zin and loss-averse investors," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 86-108.
    18. F. Chiaromonte & G. Dosi, 1998. "Modeling a Decentralized Asset Market: An Introduction the Financial "Toy Room"," Working Papers ir98115, International Institute for Applied Systems Analysis.
    19. Bruno Beaufils & Olivier Brandouy & Julien Derveeuw & Philippe Mathieu, 2007. "Testing double auction as a component within a generic market model architecture," Post-Print hal-00826143, HAL.
    20. Ke-Hung Lai & Shu-Heng Chen & Ya-Chi Huang, 2005. "Bounded Rationality and the Elasticity Puzzle: What Can We Learn from the Agent-Based Computational Consumption Capital Asset Pricing Model?," Computing in Economics and Finance 2005 207, Society for Computational Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:324:y:2003:i:1:p:227-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.