IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v203y2020ics0360544220309506.html
   My bibliography  Save this article

Economic viability of bitcoin mining using a renewable-based SOFC power system to supply the electrical power demand

Author

Listed:
  • Malfuzi, A.
  • Mehr, A.S.
  • Rosen, Marc A.
  • Alharthi, M.
  • Kurilova, A.A.

Abstract

One of Bitcoin’s most significant problems is its seemingly insatiable use of electricity. In the present research, along with providing the required power for Bitcoin (BTC) mining, a solid oxide fuel cell (SOFC) system fed either by natural gas or biogas as a renewable source of energy is used to supply the electricity demand. Thermodynamic modeling for the fuel cell system is applied to determine the required biogas or natural gas. For the proposed cases (grid-based, natural gas-fed SOFC and biogas fed SOFC), various scenarios depending on the Bitcoin price and mining difficulty are proposed. Also, the economic viability for each scenario in several countries is investigated and compared. Results indicate more profitability for grid-based mining in Bitcoin prices up to $20,000, but as the Bitcoin price increases SOFC based mining operations achieve reasonable profitability. It is shown that Iran, Russia, and China with cumulative cash flows of $87,300, $77,200 and $70,500 respectively, are the best countries to mine BTC using grid electricity while Iran, Canada and Russia are the best countries using a natural gas-fed SOFC system. While the profitability of SOFC-based mining is lower than grid-based mining, the latter method compensates with better sustainability and lower environmental costs.

Suggested Citation

  • Malfuzi, A. & Mehr, A.S. & Rosen, Marc A. & Alharthi, M. & Kurilova, A.A., 2020. "Economic viability of bitcoin mining using a renewable-based SOFC power system to supply the electrical power demand," Energy, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309506
    DOI: 10.1016/j.energy.2020.117843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220309506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luisanna Cocco & Michele Marchesi, 2016. "Modeling and Simulation of the Economics of Mining in the Bitcoin Market," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-31, October.
    2. Sadeghi, M. & Mehr, A.S. & Zar, M. & Santarelli, M., 2018. "Multi-objective optimization of a novel syngas fed SOFC power plant using a downdraft gasifier," Energy, Elsevier, vol. 148(C), pages 16-31.
    3. Li, Jingming & Li, Nianping & Peng, Jinqing & Cui, Haijiao & Wu, Zhibin, 2019. "Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies," Energy, Elsevier, vol. 168(C), pages 160-168.
    4. Delgado-Mohatar, Oscar & Felis-Rota, Marta & Fernández-Herraiz, Carlos, 2019. "The Bitcoin mining breakdown: Is mining still profitable?," Economics Letters, Elsevier, vol. 184(C).
    5. Mehr, A.S. & Gandiglio, M. & MosayebNezhad, M. & Lanzini, A. & Mahmoudi, S.M.S. & Yari, M. & Santarelli, M., 2017. "Solar-assisted integrated biogas solid oxide fuel cell (SOFC) installation in wastewater treatment plant: Energy and economic analysis," Applied Energy, Elsevier, vol. 191(C), pages 620-638.
    6. Yari, Mortaza & Mehr, Ali Saberi & Mahmoudi, Seyed Mohammad Seyed & Santarelli, Massimo, 2016. "A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester," Energy, Elsevier, vol. 114(C), pages 586-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anatolyy Dzyuba & Irina Solovyeva & Dmitry Konopelko, 2023. "Managing Electricity Costs in Industrial Mining and Cryptocurrency Data Centers," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 76-90, July.
    2. Sergio Luis Náñez Alonso & Javier Jorge-Vázquez & Miguel Ángel Echarte Fernández & Ricardo Francisco Reier Forradellas, 2021. "Cryptocurrency Mining from an Economic and Environmental Perspective. Analysis of the Most and Least Sustainable Countries," Energies, MDPI, vol. 14(14), pages 1-22, July.
    3. Juan Ignacio Ibañez & Alexander Freier, 2023. "Bitcoin’s Carbon Footprint Revisited: Proof of Work Mining for Renewable Energy Expansion," Challenges, MDPI, vol. 14(3), pages 1-21, August.
    4. Jana, Rabin K. & Ghosh, Indranil & Wallin, Martin W., 2022. "Taming energy and electronic waste generation in bitcoin mining: Insights from Facebook prophet and deep neural network," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    5. Xu, Yuhao & Luo, Xiaobing & Tu, Zhengkai & Siew Hwa Chan,, 2022. "Multi-criteria assessment of solid oxide fuel cell–combined cooling, heating, and power system model for residential application," Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehr, A.S. & MosayebNezhad, M. & Lanzini, A. & Yari, M. & Mahmoudi, S.M.S. & Santarelli, M., 2018. "Thermodynamic assessment of a novel SOFC based CCHP system in a wastewater treatment plant," Energy, Elsevier, vol. 150(C), pages 299-309.
    2. Sadeghi, Mohsen & Seyed Mahmoudi, Seyed Mohammad & Rosen, Marc A., 2022. "Thermoeconomic analysis of two solid oxide fuel cell based cogeneration plants integrated with simple or modified supercritical CO2 Brayton cycles: A comparative study," Energy, Elsevier, vol. 259(C).
    3. Shayan, E. & Zare, V. & Mirzaee, I., 2019. "On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization," Energy, Elsevier, vol. 171(C), pages 1126-1138.
    4. Mehr, A.S. & Moharramian, A. & Hossainpour, S. & Pavlov, Denis A., 2020. "Effect of blending hydrogen to biogas fuel driven from anaerobic digestion of wastewater on the performance of a solid oxide fuel cell system," Energy, Elsevier, vol. 202(C).
    5. Mehr, A.S. & Lanzini, A. & Santarelli, M. & Rosen, Marc A., 2021. "Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches," Energy, Elsevier, vol. 228(C).
    6. Sergio Luis Náñez Alonso & Javier Jorge-Vázquez & Miguel Ángel Echarte Fernández & Ricardo Francisco Reier Forradellas, 2021. "Cryptocurrency Mining from an Economic and Environmental Perspective. Analysis of the Most and Least Sustainable Countries," Energies, MDPI, vol. 14(14), pages 1-22, July.
    7. Sharif, Arshian & Brahim, Mariem & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "Analysis of the spillover effects between green economy, clean and dirty cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
    8. Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan, 2022. "Dynamic volatility connectedness between thermal coal futures and major cryptocurrencies: Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    9. Francisco Javier García-Corral & José Antonio Cordero-García & Jaime de Pablo-Valenciano & Juan Uribe-Toril, 2022. "A bibliometric review of cryptocurrencies: how have they grown?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    10. Anatolyy Dzyuba & Irina Solovyeva & Dmitry Konopelko, 2023. "Managing Electricity Costs in Industrial Mining and Cryptocurrency Data Centers," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 76-90, July.
    11. Lin William Cong & Zhiguo He & Jiasun Li & Wei Jiang, 2021. "Decentralized Mining in Centralized Pools [Concentrating on the fall of the labor share]," The Review of Financial Studies, Society for Financial Studies, vol. 34(3), pages 1191-1235.
    12. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    13. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    14. Pavel Ciaian & d’Artis Kancs & Miroslava Rajcaniova, 2021. "The economic dependency of bitcoin security," Applied Economics, Taylor & Francis Journals, vol. 53(49), pages 5738-5755, October.
    15. Hossein Hassani & Kujtim Avdiu & Stephan Unger & Maedeh Taj Mazinani, 2023. "Blockchain in the Smart City and Its Financial Sustainability from a Stakeholder’s Perspective," JRFM, MDPI, vol. 16(9), pages 1-21, September.
    16. Okorie, David Iheke & Lin, Boqiang, 2020. "Crude oil price and cryptocurrencies: Evidence of volatility connectedness and hedging strategy," Energy Economics, Elsevier, vol. 87(C).
    17. Ernest Barceló & Katarina Dimić-Mišić & Monir Imani & Vesna Spasojević Brkić & Michael Hummel & Patrick Gane, 2023. "Regulatory Paradigm and Challenge for Blockchain Integration of Decentralized Systems: Example—Renewable Energy Grids," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    18. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Inessa Tyan & Mariemma I. Yagüe & Antonio Guevara-Plaza, 2020. "Blockchain Technology for Smart Tourism Destinations," Sustainability, MDPI, vol. 12(22), pages 1-11, November.
    20. Alexander R. Hartwell & Cole A. Wilhelm & Thomas S. Welles & Ryan J. Milcarek & Jeongmin Ahn, 2022. "Effects of Synthesis Gas Concentration, Composition, and Operational Time on Tubular Solid Oxide Fuel Cell Performance," Sustainability, MDPI, vol. 14(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.