IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Using VARs and TVP-VARs with Many Macroeconomic Variables

  • Gary, Koop

This paper discusses the challenges faced by the empirical macroeconomist and methods for surmounting them. These challenges arise due to the fact that macroeconometric models potentially include a large number of variables and allow for time variation in parameters. These considerations lead to models which have a large number of parameters to estimate relative to the number of observations. A wide range of approaches are surveyed which aim to overcome the resulting problems. We stress the related themes of prior shrinkage, model averaging and model selection. Subsequently, we consider a particular modelling approach in detail. This involves the use of dynamic model selection methods with large TVP-VARs. A forecasting exercise involving a large US macroeconomic data set illustrates the practicality and empirical success of our approach.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Scottish Institute for Research in Economics (SIRE) in its series SIRE Discussion Papers with number 2013-35.

in new window

Date of creation: 2013
Date of revision:
Handle: RePEc:edn:sirdps:443
Contact details of provider: Postal: 31 Buccleuch Place, EH8 9JT, Edinburgh
Phone: +44(0)1316508361
Fax: +44(0)1316504514
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Marco Del Negro & Frank Schorfheide, 2006. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," FRB Atlanta Working Paper 2006-16, Federal Reserve Bank of Atlanta.
  2. Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
  3. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
  4. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
  5. Kadiyala, K. Rao & Karlsson, Sune, 1994. "Numerical Aspects of Bayesian VAR-modeling," SSE/EFI Working Paper Series in Economics and Finance 12, Stockholm School of Economics.
  6. repec:oup:restud:v:72:y:2005:i:3:p:821-852 is not listed on IDEAS
  7. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2011. "Bayesian VARs: specification choices and forecast accuracy," Working Paper 1112, Federal Reserve Bank of Cleveland.
  8. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  9. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, 03.
  10. Korobilis, Dimitris, 2013. "Bayesian forecasting with highly correlated predictors," Economics Letters, Elsevier, vol. 118(1), pages 148-150.
  11. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  12. Dimitris Korobilis, 2010. "VAR Forecasting Using Bayesian Variable Selection," Working Paper Series 51_10, The Rimini Centre for Economic Analysis, revised Apr 2011.
  13. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  14. Andersson, Michael K & Karlsson, Sune, 2007. "Bayesian Forecast Combination for VAR Models," Working Papers 2007:13, Örebro University, School of Business.
  15. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
  16. Carriero, A. & Kapetanios, G. & Marcellino, M., 2009. "Forecasting exchange rates with a large Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
  17. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
  18. Domenico Giannone & Michèle Lenza & Daphné Momferatu & Luca Onorante, 2010. "Short-term inflation projections: a Bayesian vector autoregressive approach," Working Papers ECARES ECARES 2010-011, ULB -- Universite Libre de Bruxelles.
  19. Miguel, Belmonte & Gary, Koop, 2013. "Model Switching and Model Averaging in Time- Varying Parameter Regression Models," SIRE Discussion Papers 2013-34, Scottish Institute for Research in Economics (SIRE).
  20. Gefang, Deborah, 2014. "Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage," International Journal of Forecasting, Elsevier, vol. 30(1), pages 1-11.
  21. Koop, Gary & Korobilis, Dimitris, 2012. "Large time-varying parameter VARs," MPRA Paper 38591, University Library of Munich, Germany.
  22. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  23. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342.
  24. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
  25. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
  26. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, July.
  27. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  28. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:edn:sirdps:443. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gina Reddie)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.