IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Model Switching and Model Averaging in Time- Varying Parameter Regression Models

  • Miguel, Belmonte
  • Gary, Koop

This paper investigates the usefulness of switching Gaussian state space models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA) in time-varying parameter regression models. DMS methods allow for model switching, where a different model can be chosen at each point in time. Thus, they allow for the explanatory variables in the time-varying parameter regression model to change over time. DMA will carry out model averaging in a time-varying manner. We compare our exact approach to DMA/DMS to a popular existing procedure which relies on the use of forgetting factor approximations. In an application, we use DMS to select different predictors in an in ation forecasting application. We also compare different ways of implementing DMA/DMS and investigate whether they lead to similar results.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repo.sire.ac.uk/handle/10943/440
Download Restriction: no

Paper provided by Scottish Institute for Research in Economics (SIRE) in its series SIRE Discussion Papers with number 2013-34.

as
in new window

Length:
Date of creation: 2013
Date of revision:
Handle: RePEc:edn:sirdps:440
Contact details of provider: Postal: 31 Buccleuch Place, EH8 9JT, Edinburgh
Phone: +44(0)1316508361
Fax: +44(0)1316504514
Web page: http://www.sire.ac.uk
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Guidolin, Massimo & Timmermann, Allan G, 2007. "Forecasts of US Short-term Interest Rates: A Flexible Forecast Combination Approach," CEPR Discussion Papers 6188, C.E.P.R. Discussion Papers.
  2. D'Agostino, Antonello & Gambetti, Luca & Giannone, Domenico & Giannone, Domenico, 2009. "Macroeconomic Forecasting and Structural Change," Research Technical Papers 8/RT/09, Central Bank of Ireland.
  3. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
  4. Joshua C C Chan & Gary Koop & Roberto Leon-Gonzales & Rodney W Strachan, 2011. "Time Varying Dimension Models," CAMA Working Papers 2011-28, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  5. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
  6. Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
  7. Dimitris Korompilis, 2009. "Assessing the Transmission of Monetary Policy Shocks Using Dynamic Factor Models," Working Papers 0914, University of Strathclyde Business School, Department of Economics.
  8. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
  9. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
  10. Cogley, Timothy W. & Morozov, Sergei & Sargent, Thomas J., 2003. "Bayesian fan charts for UK inflation: Forecasting and sources of uncertainty in an evolving monetary system," CFS Working Paper Series 2003/44, Center for Financial Studies (CFS).
  11. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
  12. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, June.
  13. repec:dgr:uvatin:20110172 is not listed on IDEAS
  14. Koop, Gary & Tole, Lise, 2011. "Forecasting the European Carbon Market," SIRE Discussion Papers 2011-20, Scottish Institute for Research in Economics (SIRE).
  15. Sylvia Frühwirth-Schnatter, 2001. "Fully Bayesian Analysis of Switching Gaussian State Space Models," Annals of the Institute of Statistical Mathematics, Springer, vol. 53(1), pages 31-49, March.
  16. Tyler H. McCormick & Adrian E. Raftery & David Madigan & Randall S. Burd, 2012. "Dynamic Logistic Regression and Dynamic Model Averaging for Binary Classification," Biometrics, The International Biometric Society, vol. 68(1), pages 23-30, 03.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:edn:sirdps:440. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gina Reddie)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.