IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Time Varying Dimension Models

  • Joshua C.C. Chan
  • Gary Koop
  • Roberto Leon-Gonzalez
  • Rodney W. Strachan

Time varying parameter (TVP) models have enjoyed an increasing popularity in empirical macroeconomics. However, TVP models are parameter-rich and risk over-fitting unless the dimension of the model is small. Motivated by this worry, this article proposes several Time Varying Dimension (TVD) models where the dimension of the model can change over time, allowing for the model to automatically choose a more parsimonious TVP representation, or to switch between different parsimonious representations. Our TVD models all fall in the category of dynamic mixture models. We discuss the properties of these models and present methods for Bayesian inference. An application involving U.S. inflation forecasting illustrates and compares the different TVD models. We find our TVD approaches exhibit better forecasting performance than many standard benchmarks and shrink toward parsimonious specifications. This article has online supplementary materials.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Journal of Business & Economic Statistics.

Volume (Year): 30 (2012)
Issue (Month): 3 (January)
Pages: 358-367

in new window

Handle: RePEc:taf:jnlbes:v:30:y:2012:i:3:p:358-367
DOI: 10.1080/07350015.2012.663258
Contact details of provider: Web page:

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013. "Real-Time Inflation Forecasting in a Changing World," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
  2. Giordani, P. & Kohn, R. & van Dijk, D.J.C., 2005. "A unified approach to nonlinearity, structural change and outliers," Econometric Institute Research Papers EI 2005-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  3. D'Agostino, Antonello & Gambetti, Luca & Giannone, Domenico & Giannone, Domenico, 2009. "Macroeconomic Forecasting and Structural Change," Research Technical Papers 8/RT/09, Central Bank of Ireland.
  4. James H. Stock & Mark W. Watson, 2008. "Phillips curve inflation forecasts," Conference Series ; [Proceedings], Federal Reserve Bank of Boston, vol. 53.
  5. Fabio Canova, 2007. "DSGE Models, Solutions, and Approximations, from Methods for Applied Macroeconomic Research," Introductory Chapters, in: Methods for Applied Macroeconomic Research Princeton University Press.
  6. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
  7. James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
  8. Gary Koop & Dimitris Korobilis, 2009. "Forecasting Inflation Using Dynamic Model Averaging," Working Paper Series 34_09, The Rimini Centre for Economic Analysis.
  9. John Geweke & Gianni Amisano, 2007. "Hierarchical Markov Normal Mixture Models with Applications to Financial Asset Returns," Working Papers 0705, University of Brescia, Department of Economics.
  10. Canova, Fabio & Ciccarelli, Matteo, 2004. "Forecasting and turning point predictions in a Bayesian panel VAR model," Journal of Econometrics, Elsevier, vol. 120(2), pages 327-359, June.
  11. Canova, Fabio, 1993. "Modelling and forecasting exchange rates with a Bayesian time-varying coefficient model," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 233-261.
  12. Giordani, Paolo & Kohn, Robert, 2006. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Working Paper Series 196, Sveriges Riksbank (Central Bank of Sweden).
  13. Douglas Staiger & James H. Stock & Mark W. Watson, 1997. "The NAIRU, Unemployment and Monetary Policy," Journal of Economic Perspectives, American Economic Association, vol. 11(1), pages 33-49, Winter.
  14. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
  15. Matteo Ciccarelli & Alessandro Rebucci, 2002. "The Transmission Mechanism of European Monetary Policy; Is There Heterogeneity? Is it Changing over Time?," IMF Working Papers 02/54, International Monetary Fund.
  16. Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2008. "Dynamic probabilities of restrictions in state space models: An application to the Phillips curve," Working Paper Series 26_08, The Rimini Centre for Economic Analysis.
  17. Korobilis, Dimitris, 2009. "VAR forecasting using Bayesian variable selection," MPRA Paper 21124, University Library of Munich, Germany.
  18. Ballabriga, Fernando & Sebastian, Miguel & Valles, Javier, 1999. "European asymmetries," Journal of International Economics, Elsevier, vol. 48(2), pages 233-253, August.
  19. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
  20. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
  21. Fabio Canova, 2007. "Bayesian Time Series and DSGE Models, from Methods for Applied Macroeconomic Research," Introductory Chapters, in: Methods for Applied Macroeconomic Research Princeton University Press.
  22. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
  23. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
  24. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
Full references (including those not matched with items on IDEAS)

This item is featured on the following reading lists or Wikipedia pages:

  1. Economic Logic blog

When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:30:y:2012:i:3:p:358-367. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.